Abstract:
A transparent conductive film comprises a transparent substrate and a metal wiring portion formed thereon. A thin metal wire contained in an electrode portion in the metal wiring portion has a surface shape satisfying the condition of Ra2/Sm>0.01 μm and has a metal volume content of 35% or more. Ra represents an arithmetic average roughness in micrometers and is equal to or smaller than the thickness of a metal wiring located in a position where the surface roughness is measured. Sm represents an average distance between convex portions and is 0.01 μm or more.
Abstract:
A transparent conductive film comprises a transparent substrate and a metal wiring portion formed thereon. A thin metal wire contained in an electrode portion in the metal wiring portion has a surface shape satisfying the condition of Ra2/Sm>0.01 μm and has a metal volume content of 35% or more. Ra represents an arithmetic average roughness in micrometers and is equal to or smaller than the thickness of a metal wiring located in a position where the surface roughness is measured. Sm represents an average distance between convex portions and is 0.01 μm or more.
Abstract:
A printed wiring board includes an insulation layer, conductive pads formed on the insulation layer and positioned to connect an electronic component, and a conductive wiring pattern including first and second conductive patterns and formed on the insulation layer such that the conductive wiring pattern is extending between the conductive pads. The first pattern includes first wiring lines, the second pattern includes second wiring lines, the first and second conductive patterns are formed such that the first wiring lines and the second wiring lines are alternately arrayed on the insulation layer, each of the first wiring lines includes a first metal layer formed on an interface with the insulation layer, each of the second wiring lines includes a second metal layer formed on an interface with the insulation layer, and the first metal layer includes a metal material which is different from a metal material forming the second metal layer.
Abstract:
The disclosure relates to a metal nanowire film. The metal nanowire film includes a substrate and a number of first metal nanowire bundles located on the substrate. The number of first metal nanowire bundles are parallel with and spaced from each other. Each of the number of first metal nanowire bundles includes a number of first metal nanowires parallel with each other. The first distance between adjacent two of the number of first metal nanowires is less than the second distance between adjacent two of the number of first metal nanowire bundles.
Abstract:
A transparent conductive film comprises a transparent substrate and a metal wiring portion formed thereon. A thin metal wire contained in an electrode portion in the metal wiring portion has a surface shape satisfying the condition of Ra2/Sm>0.01 μm and has a metal volume content of 35% or more. Ra represents an arithmetic average roughness in micrometers and is equal to or smaller than the thickness of a metal wiring located in a position where the surface roughness is measured. Sm represents an average distance between convex portions and is 0.01 μm or more.
Abstract:
A printed wiring board includes a first circuit substrate having first pads and second pads such that the first pads are positioned to mount an electronic component on the first circuit substrate and that the second pads are positioned to electrically connect the first circuit substrate to a second circuit substrate, and metal posts including plating material and formed on the second pads respectively such that the metal posts are positioned to mount the second circuit substrate on the first circuit substrate. Each of the metal posts has a height h1 and a thickness b such that the metal posts have a value h1/b which is greater than 0.1 and smaller than 1.0 where the value h1/b is obtained by dividing the height h1 by the thickness b.
Abstract translation:印刷布线板包括具有第一焊盘和第二焊盘的第一电路基板,使得第一焊盘被定位成将电子部件安装在第一电路基板上,并且第二焊盘被定位成将第一电路基板电连接到第二电路 基板和包括电镀材料的金属柱并分别形成在第二焊盘上,使得金属柱被定位成将第二电路基板安装在第一电路基板上。 每个金属柱具有高度h1和厚度b,使得金属柱具有大于0.1且小于1.0的值h1 / b,其中通过将高度h1除以厚度b获得值h1 / b 。
Abstract:
An electrical connector includes a circuit board, a chip module, an isolation portion, and at least one liquid metal conductor. Multiple first conducting portions are disposed on the circuit board, and multiple second conducting portions are disposed on the chip module. The second conducting portions correspond to the first conducting portions. The isolation portion is located between the circuit board and the chip module. An upper surface and a lower surface of the isolation portion urge against the chip module and the circuit board respectively. The isolation portion surrounds, joints, and seals the first conducting portion. The at least one liquid metal conductor is correspondingly disposed between the first conducting portion and the second conducting portion, and electrically conducting the circuit board and the chip module. The liquid metal conductor is gallium or gallium alloy.
Abstract:
Active or functional additives are embedded into surfaces of host materials for use as components in a variety of electronic or optoelectronic devices, including solar devices, smart windows, displays, and so forth. Resulting surface-embedded device components provide improved performance, as well as cost benefits arising from their compositions and manufacturing processes.
Abstract:
Active or functional additives are embedded into surfaces of host materials for use as components in a variety of electronic or optoelectronic devices, including solar devices, smart windows, displays, and so forth. Resulting surface-embedded device components provide improved performance, as well as cost benefits arising from their compositions and manufacturing processes.
Abstract:
A method for manufacturing a fixing belt for a wearable device, includes providing a flexible circuit board including a first area, a second area, and a pad in the first area; disposing an insulating layer on the flexible circuit board, the insulating layer being disposed in the second area; forming an electric conductive portion in the insulating layer; disposing a first protective layer and a second protective layer on opposite surfaces of the flexible circuit board, the electric conductive portion being between the flexible circuit board and the first protective layer; mounting an electronic component on the pad. A portion of the fixing belt containing the second area is a plug-in area, and the plug-in area is configured to be engaged with a device body of the wearable device, the electric conductive portion is disposed in the plug-in area.