Abstract:
An angle-adjustable printed circuit board structure having two printed circuit board sections arranged angularly with respect to one another. The printed circuit board structure contains at least one conduction element which is embedded at least predominantly in the printed circuit board structure and which extends between two contact pads and is electrically conductively connected to said contact pads. The two contact pads are situated on different printed circuit board sections. The printed circuit board sections are angle-adjustable and/or angled relative to one another with maintenance of the connections between the contact pads and the at least one conduction element and with bending of the at least one conduction element via a bending edge between the printed circuit board sections. The conduction element has a larger extent along the bending edge than perpendicularly thereto, as viewed in cross section.
Abstract:
A multilayer substrate that retains a curved state without causing fluctuations in electrical characteristics includes a main body including a plurality of insulating sheets to be stacked and made of a flexible material. A signal wire extends in the main body. A ground conductor is provided at a positive-direction side in a z-axis direction relative to the signal wire in the main body, and overlaps the signal line in a plan view seen from the z-axis direction. A ground conductor is provided on a negative-direction side in the z-axis direction relative to the signal wire in the main body, and overlaps the signal line in a plan view seen from the z-axis direction. The state in which the main body is curved so that the signal wire defines an arc is retained by plastic deformation of the ground conductors.
Abstract:
A multilayer substrate that retains a curved state without causing fluctuations in electrical characteristics includes a main body including a plurality of insulating sheets to be stacked and made of a flexible material. A signal wire extends in the main body. A ground conductor is provided at a positive-direction side in a z-axis direction relative to the signal wire in the main body, and overlaps the signal line in a plan view seen from the z-axis direction. A ground conductor is provided on a negative-direction side in the z-axis direction relative to the signal wire in the main body, and overlaps the signal line in a plan view seen from the z-axis direction. The state in which the main body is curved so that the signal wire defines an arc is retained by plastic deformation of the ground conductors.
Abstract:
A method of forming a curved touch surface is disclosed. The method can include depositing and patterning a conductive thin film on a flexible substrate to form at least one touch sensor pattern, while the flexible substrate is in a flat state. According to certain embodiments, the method can include supporting the flexible substrate in the flat state on at least one curved forming substrate having a predetermined curvature; and performing an anneal process, or an anneal-like high-heat process, on the conductive thin film, wherein the anneal process can cause the flexible substrate to conform to the predetermined curvature of the at least one curved forming substrate. According to an embodiment, the curved forming substrate can include a first forming substrate having a first predetermined curvature and a second forming substrate having a second predetermined curvature complementing the first predetermined curvature.
Abstract:
A flexible wiring substrate that is used in a liquid ejection head having an element substrate provided with energy generating elements for generating energy for ejecting liquid includes: a bending portion; a base member including resin; electrical wiring lines formed on the base member and electrically connected to the element substrate, the electrical wiring lines extending over a ridge of the bending portion; and a metal layer that is arranged on an area of the base member in which no electrical wiring lines are provided and that is not electrically connected to the element substrate, the metal layer extending over the ridge.
Abstract:
An electrical connection in which a flexible, elastic conductor track carrier is affixed by a connecting end to an electrical component and embedded in potting compound. To prevent breakage at the fastening point at the transition from the potting compound to the outside, the conductor track carrier is reinforced with additional layers of insulating material.
Abstract:
The present invention comprises a printed circuit having a three-dimensional surface capable of conforming to a contoured surface of a vehicle trim panel. Printed circuit comprises a plurality of electrical conductors and connectors secured to a polymeric substrate. A convoluted region of the printed circuit permits formation of the three-dimensional surface in the printed circuit. The present invention further comprises a method a producing three-dimensional surface and the printed circuit by either thermoforming the printed circuit or mechanically stretching the printed circuit to produce the three-dimensional surface.
Abstract:
A wiring module for electrically connecting a plurality of electric parts disposed on an equipment frame to a source of electric power, the module comprising an elongated insulating substrate formed to extend along a path adjacent to electric parts disposed on the frame. A pattern of wiring conductors extends along and integral with the insulating substrate for conducting electric current from the source of electric power to each of the electric parts to be connected. The insulating substrate has one or more edge portions provided with protrusions integrally formed with the substrate and extending laterally therefrom. The protrusions each are positioned on the insulating substrate at a location adjacent an electric part to be connected and at least a portion of the wiring conductors are integral with the protrusions to provide a contact on the protrusions for connection to corresponding electric parts.
Abstract:
The present invention provides a manufacturing method of a curved circuit board which includes the following steps. The first step is to provide a flexible substrate. The next step is to form a patterned catalyst layer on the flexible substrate. The next step is to deposit metal on the patterned catalyst layer by electroless plating to form a wiring substrate, wherein the wiring substrate includes a planar wiring structure. The last step is to place the wiring substrate into a mold having a molding surface with a three-dimensional design, and then execute a heating process to shape the planar wiring structure to a three-dimensional wiring structure, wherein the heated wiring substrate is laminated to the molding surface of the mold. The present invention further provides an electronic product using the curved circuit board.
Abstract:
An integrated circuit that includes a substrate having a shape memory material (SMM), the SMM is in a first deformed state and has a first crystallography structure and a first configuration, the SMM is able to be deformed from a first configuration to a second configuration, the SMM changes to a second crystallography structure and deforms back to the first configuration upon receiving energy, the SMM returns to the first crystallography structure upon receiving a different amount of energy; and an electronic component attached to substrate. In other forms, the SMM is in a first deformed state and has a first polymeric conformation and a first configuration, the SMM changes from a first polymeric conformation to a second polymeric conformation and be deformed from a first configuration to a second configuration, the SMM changes returns to the first polymeric conformation and deforms back to the first configuration upon receiving energy.