Abstract:
A signal transmission cable as a signal transmission component includes a laminate including a first thin portion on one of the opposite ends in a first direction and a second thin portion on the other end in the first direction. A portion between the first thin portion and the second thin portion in the laminate is a main line portion. The thickness of the first and second thin portions is thinner than the thickness of the main line portion. The surface on one end in the thickness direction of the laminate defined by the main line portion and the first and second thin portions is a continuous flat surface. A connector for external connection is arranged on the surfaces of the first and second thin portions, on the sides in which each of the thin portions and the main line portion have a difference in level.
Abstract:
A display device includes: a first substrate; a wire portion disposed on the first substrate; a pad portion connected with the wire portion; a printed circuit board facing the first substrate and including an output electrode; and an anisotropic conductive film disposed between the first substrate and the printed circuit board, wherein the anisotropic conductive film comprises a plurality of conductive particles disposed with a constant gap, and the plurality of conductive particles respectively disposed at apexes of virtual regular hexagons in a plan view, with a longest diagonal of the respective virtual regular hexagon being parallel with the y-axis.
Abstract:
A flexible electronic device includes a first flexible substrate, a first electronic component, a second flexible substrate, a second electronic component and an adhesive layer disposed between the first flexible substrate and the second flexible substrate. The first electronic component is disposed on a first surface of the first flexible substrate. The second electronic component is disposed on a first surface of the second flexible substrate. The first surface of the first flexible substrate has a first FPC bonding area having an orthogonal projection projected on a plane where the second flexible substrate is located does not overlap the second flexible substrate. The first surface of the second flexible substrate has a second FPC bonding area having an orthogonal projection projected on a plane where the first flexible substrate is located does not overlap the first flexible substrate.
Abstract:
An electrical assembly is disclosed in which two flexible printed circuits are electrically joined. This allows greater lengths of flexible printed circuits to be provided, for example for gas turbine engine harnesses. Each flexible printed circuit has a terminating region having electrically conductive through holes that are connected to respective electrical tracks of the flexible printed circuit. The terminating regions are adjacent each other in the electrical assembly, and an electrically conductive pin is passed through the aligned through holes, then permanently bonded in position, for example by welding. This results in a robust, reliable connection of two flexible printed circuits.
Abstract:
A flexible printed circuit film connects a substrate with a printed circuit board. The flexible printed circuit film includes a first area configured to be attached to the substrate; a second area configured to be connected with the printed circuit board; and a third area between the first area and the second area. Each of the first area and the third area has a trapezoid shape with a width that gradually decreases in a direction toward the second area, and the second area has a rectangular shape.
Abstract:
For a method for producing a circuit board consisting of a plurality of circuit board areas, wherein the individual circuit board areas comprise at least one layer made of an in insulating base material and a conducting pattern located on or in, the base material, the following is provided: a substrate material, at least one registration mark formed in the substrate material, a first circuit board area arranged on the substrate material, at least one additional circuit board area, which substantially adjoins the first circuit board area or at least partially overlaps the first circuit board, the additional circuit board areas being oriented relative to the registration mark, and a plurality of connections of the conducting patterns of the first circuit board area and of the at least one additional circuit board area. Thus improved registration and orientation can be achieved when circuit board areas are coupled.
Abstract:
A strap band including a flexible wire bus having electrodes and wires coupled with the electrodes is described. The wire bus may be include in a strap band formed by molding an inner strap, mounting the wire bus in the inner strap, and injection molding an outer strap over the inner strap and wire bus to form a strap band. The electrodes may be positioned on the inner strap to accommodate a target range of a body portion the strap band may be worn on. A material of the strap band and a material the wire bus may be selected to allow a low coefficient of friction between the wire bus and strap band so that loads applied to the strap band may not be coupled with the wire bus or cause damage to wires due to pull and/or torsional load forces applied to the strap band.
Abstract:
An electrical assembly is disclosed in which two flexible printed circuits are electrically joined. This allows greater lengths of flexible printed circuits to be provided, for example for gas turbine engine harnesses. Each flexible printed circuit has a terminating region having electrically conductive through holes that are connected to respective electrical tracks of the flexible printed circuit. The terminating regions are adjacent each other in the electrical assembly, and an electrically conductive pin is passed through the aligned through holes, then permanently bonded in position, for example by welding. This results in a robust, reliable connection of two flexible printed circuits.
Abstract:
A flexible printed circuit board having enhanced peeling force and a touch panel including the same are provided. The flexible printed circuit board (FPCB) includes a first bonding portion and a second bonding portion respectively bonded to a first circuit unit and a second circuit unit. The first bonding portion includes a pad corresponding portion corresponding to pads of the first circuit unit and dummy portions outwardly extending from both end portions of the pad corresponding portion. An FPCB wiring formation portion includes FPCB wirings respectively connected to the pads and extending from the first bonding portion to the second bonding portion and concave portions respectively disposed to be adjacent to the dummy portions and having a curved surface.