Abstract:
A printed circuit board includes a pad to receive an electric signal from a controller, a plurality of signal lines connected to the pad to transmit the electric signal received at the pad, and a signal transmission unit connected to the signal lines to transmit the electric signal to a coil. The plurality of signal lines are configured to face each other in at least a partial region and/or disposed in a zigzag form in at least a partial region. If the printed circuit board and a vibration actuator including the printed circuit board are used, it is possible to change a high frequency interference region according to a pattern by changing a pattern of the printed circuit board, and to improve receiving efficiency of an antenna by reducing high frequency noise.
Abstract:
The present disclosure relates to a PCB and a method in the PCB for reducing common-mode current. The PCB comprises two differential lines and each of the differential lines is on one or more planes of the PCB. The two differential lines carry a differential mode current and the common mode current. The differential mode current and the common mode current may be at least one of a forward current and a backward current. Further, a predefined configuration is formed using each of the two differential lines to generate impedance at the predefined configuration. Here, the predefined configuration is placed close to each other to generate a dielectric capacitance. The flow of the forward current and the backward current in adjacent tracks of each of the two differential lines in the predefined configuration are in opposite direction.
Abstract:
An embedded device 105 is assembled within a flexible circuit assembly 30 with the embedded device mid-plane intentionally located in proximity to the flexible circuit assembly central plane 115 to minimize stress effects on the embedded device. The opening 18, for the embedded device, is enlarged in an intermediate layer 10 to enhance flexibility of the flexible circuit assembly.
Abstract:
Printed circuit includes a planar substrate having opposite sides and a thickness extending therebetween. The sides extend parallel to a lateral plane. The printed circuit also includes a plurality of conductive vias extending through the planar substrate in a direction that is perpendicular to the lateral plane. The conductive vias include ground vias and signal vias. The signal vias form a plurality of quad groups in which each quad group includes a two-by-two array of the signal vias. Optionally, the printed circuit also includes signal traces that electrically couple to the signal vias. The signal traces may form a plurality of quad lines in which each quad line includes four of the signal traces. The four signal traces of each quad line may extend parallel to one another and be in a two-by-two formation.
Abstract:
To provide a wiring board ensuring adhesion strength of a connecting terminal to reduce the connecting terminal from being fallen over or peeled off under fabrication process. The wiring board according to the present invention includes a laminated body where one or more layer of each of an insulating layer and a conductor layer are laminated. The wiring board includes a plurality of connecting terminals formed separately from one another on the laminated body and a filling member filled up between the plurality of connecting terminals. The filling member is filled up to a position lower than a height of the plurality of connecting terminals. The connecting terminals has a cross section with a trapezoidal shape where a width of a first principal surface on a side contacting the laminated body is wider than a width of a second principal surface facing the first principal surface.
Abstract:
An inductor, a circuit board and a method for forming an inductor are provided. The inductor comprises: a first pad arranged on a first metal wiring layer of a circuit board; a second pad arranged on a second metal wiring layer of the circuit board; and a first hole with conducting medium filled therein, one end of the first hole being located in the first pad and the other end thereof being located in the second pad. The inductor can effectively reduce the area of the circuit occupied by the inductor.
Abstract:
Methods and apparatus are disclosed for wirelessly transmitting power. In one aspect, an apparatus for wireless transmitting power is provided. The apparatus comprises a first metal sheet having a shape that defines a plurality of slots, the plurality of slots inwardly extending from a periphery of the first metal sheet. The apparatus further comprises a coil configured to generate a magnetic field sufficient to charge or power a load, wherein the first metal sheet extends over a width and a length of the coil, and wherein the plurality of slots are configured to at least partially cancel eddy currents generated in the first metal sheet via the magnetic field.
Abstract:
A multilayered substrate includes unit substrates laminated in a direction of thickness thereof, and the unit substrates include a photosensitive insulating layer, a conductive pattern disposed in the photosensitive insulating layer, and a bump penetrating into the photosensitive insulating layer and providing an interlayer connection to the conductive pattern.
Abstract:
A circuit board is provided that includes at least one Peltier heat pump device with at least one pair of semiconductor members arranged thermally in parallel and electrically in series. The at least one pair of semiconductor members is at least partially embedded in the circuit board.
Abstract:
A wiring board includes a first insulating layer; a first wire that is provided at a first surface of the first insulating layer and transmits a first signal; and a second wire that is provided at a second surface of the first insulating layer that is opposite to the first surface, includes a first portion that is parallel to at least a portion of the first wire, and transmits a first component of the first signal that is transmitted through the first wire.