Abstract:
A corrosion sensor includes a plurality of metal strips having different thicknesses. A first metal strip with the least thickness is first employed to provide sensitive corrosion detection. After an exposed portion of the first metal strip is consumed, a second metal strip having a second least thickness can be employed to provide continued sensitive corrosion detection employing a remaining un-corroded portion of the second metal strip. The plurality of metal strips can be sequentially employed as exposed portions of thinner metal strips become unusable through complete corrosion and un-corroded exposed portions of thicker metal strips become thin enough to provide sensitive corrosion detection.
Abstract:
The present invention relates to an array substrate assembly and a display device. The array substrate assembly comprises a substrate; a first metal line formed at one side of the substrate; an insulating layer formed on the first metal line; a second metal line formed on the insulating layer, wherein one end of the second metal line connected with a driving circuit is formed with a second terminal, wherein in a thickness direction of the substrate, a distance between a surface of the second terminal away from the one side of the substrate and the substrate is less than a distance between a surface of the second metal line away from the one side of the substrate and the substrate. The display device includes the array substrate assembly. With the solution of the present invention, when the array substrate assembly is connected to IC or COF, deformation difference between a conducting gold ball at a gate line terminal and a conducting gold ball at a date line is small, thus impedances at the two terminals are close to each other, and therefore image quality of the display device is improved.
Abstract:
A method for manufacturing a non-planar printed circuit board assembly (1) is disclosed. The method comprises providing a planar formable substrate (2) for supporting a conductive material (3) and at least one electronic component (4), printing a circuit pattern of an uncured conductive material (3) on the planar substrate (2), forming the substrate (2) and the uncured conductive material (3) into a non-planar shape, and curing the conductive material (3), wherein the substrate (2) comprises a metal sheet and an electrically insulating coating (2b) arranged between the metal sheet and the conductive material (3).
Abstract:
The manufacturing method gives the possibility of manufacturing a printed circuit comprising an electrically insulating substrate and electrically conductive elements borne by the substrate. The manufacturing method comprises the manufacturing of the insulating substrate and of the conductive elements together by additive manufacturing.
Abstract:
A wiring board according to the present invention includes an insulating board; a first pad provided inwardly from a surface of the insulating board and electrically connected to an electrode of an electronic component; a second pad provided on the surface of the insulating board and electrically connected to a lead terminal. The first pad and the second pad include a first layer region made of copper and a second layer region arranged on the first layer region and made of nickel, and a thickness of the second layer region of the second pad is larger than a thickness of the second layer region of the first pad.
Abstract:
A differential transmission path composed of a pair of transmission lines is formed on an upper surface of a base insulating layer. A ground conductor layer is formed on a lower surface of the base insulating layer. The ground conductor layer is opposite to the differential transmission path with the base insulating layer sandwiched therebetween. A spacing between the transmission lines at a part of the differential transmission path is smaller than a spacing between the transmission lines at another part of the differential transmission path. A thickness of a part of the ground conductor layer overlapping the part of the differential transmission path is smaller than the thickness of another part of the ground conductor layer overlapping the another part of the differential transmission path.
Abstract:
A printed wiring board includes an insulation layer, conductive pads formed on the insulation layer and positioned to connect an electronic component, and a conductive wiring pattern including first and second conductive patterns and formed on the insulation layer such that the conductive wiring pattern is extending between the conductive pads. The first pattern includes first wiring lines, the second pattern includes second wiring lines, the first and second conductive patterns are formed such that the first wiring lines and the second wiring lines are alternately arrayed on the insulation layer, each of the first wiring lines includes a first metal layer formed on an interface with the insulation layer, each of the second wiring lines includes a second metal layer formed on an interface with the insulation layer, and the first metal layer includes a metal material which is different from a metal material forming the second metal layer.
Abstract:
An electronic device according to the present disclosure includes a component, an electrode placed on the component, a conductor which includes a first conductor section, including an electrode contact surface in contact with the electrode, and two second conductor sections, electrically connected to two respective facing edges of the first conductor section to extend in respective directions away from the electrode and including respective inclined surfaces inclined in directions toward a central axis passing through a center of the electrode and perpendicular to the surface of the electrode, an insulator which is in contact with the two second conductor sections from sides opposite to the central axis and encloses the conductor and the electrode, and a case housing the component, the electrode, the conductor, and the insulator. A space without the insulator is defined between the two second conductor sections.
Abstract:
An electronic control device includes a substrate, a plurality of component-mounted wires, a plurality of electronic components, a common wire, an interrupt wire and a protective layer. The component-mounted wires and the common wire are disposed on the substrate. The electronic components are mounted on the respective component-mounted wires and are coupled with the common wire. The interrupt wire is coupled between one component-mounted wire and the common wire, and is configured to melt in accordance with heat generated by an overcurrent to interrupt a coupling between the component-mounted wire and the common wire. The protective layer covers a surface of the substrate including the interrupt wire and defines an opening portion so that at least a portion of the interrupt wire is exposed.
Abstract:
A flex-rigid printed wiring board is provided which can retain flexibility of a flexible portion while increasing durability of the flexible portion against folding, and can ensure conduction in a rigid portion, and a method of manufacturing the printed wiring board. The flex-rigid printed wiring board includes a conductor layer provided on at least one face of a base film, one region of the wiring board containing the base film being a rigid region, an another region containing the base film being a flexible region. The average thickness “tf” of the conductor layer on the base film formed in the flexible region and the average thickness “tR” of the conductor layer on the base film formed in the rigid region satisfy the relationship of tf