Abstract:
An electronic apparatus includes a first electronic part with a first terminal, a second electronic part with a second terminal opposite the first terminal, and a joining portion which joins the first terminal and the second terminal. The joining portion contains a pole-like compound extending in a direction in which the first terminal and the second terminal are opposite to each other. The joining portion contains the pole-like compound, so the strength of the joining portion is improved. When the first terminal and the second terminal are joined, the temperature of one of the first electronic part and the second electronic part is made higher than that of the other. A joining material is cooled and solidified in this state. By doing so, the pole-like compound is formed.
Abstract:
A surface mount device is disclosed. The surface mount device can include an electronic component operable in an electronic circuit. The surface mount device can also include a heat transfer component thermally coupled to the electronic component. The heat transfer component can have a heat transfer surface configured to interface with a heat sink. In addition, the surface mount device can include a resiliently flexible lead to electrically couple the electronic component to a circuit board. The resiliently flexible lead can be configured to resiliently deflect to facilitate a variable distance of the heat transfer surface from the circuit board, to enable the heat transfer surface and a planar heat transfer surface of another similarly configured surface mount device to be substantially aligned for interfacing with the heat sink.
Abstract:
A high-frequency module includes a lower base member having a recess part formed in an upper face thereof, and having a base metal part formed on a lower face thereof that is to be grounded, an upper substrate disposed inside the recess part of the lower base member. The high frequency module also includes a semiconductor device and a first ground metal part connected to the base metal part and disposed in the lower base member. The upper substrate has a first through hole formed therethrough at a position where the first ground metal part is situated, and the semiconductor device is placed on the first ground metal part in the first through hole.
Abstract:
A thermal management system/method allowing efficient electrical/thermal attachment of heat sourcing PCBs to heat sinking PCBs using reflow/wave/hand soldering is disclosed. The disclosed system/method may incorporate a combination of support pins, spacer pads, and/or contact paste that mechanically attaches a heat sourcing PCB (and its associated components) to a heat sinking PCB such that thermal conductivity between the two PCBs can be optimized while simultaneously allowing controlled electrical conductivity between the two PCBs. Controlled electrical isolation between the two PCBs is provided for using spacer pads that may also be thermally conductive. Contact paste incorporated in some embodiments permits enhanced conductivity paths between the heat sourcing PCB, a thermally conductive plate mounted over the heat sourcing PCB, and the heat sinking PCB. The use of self-centering support pins incorporating out-gassing vents in some embodiments allows reflow/wave/hand soldering as desired.
Abstract:
A method for determining the temperature of a heat source and an electronic unit, including a printed-circuit board equipped with a sensor and a heat sink, the sensor being connected to the heat sink in a heat-conducting manner.
Abstract:
A base substrate includes a ceramic sintered substrate having through holes, first and second metal wirings which are integrally disposed so as to be connected to the surface of the ceramic sintered substrate and the inside of the through holes, and first and second active metal layers which are disposed between the ceramic sintered substrate and the first and second metal wirings.
Abstract:
A device for screening an electronic module which has electronic components fixed to a printed circuit board and which is connected to a heat sink. The heat sink comprises an electrically conductive material. The printed circuit board has at least one layer composed of electrically conductive material. The heat sink and the printed circuit board serve as screening elements.
Abstract:
Disclosed are apparatus and methods related to ground paths implemented with surface mount devices to facilitate shielding of radio-frequency (RF) modules. In some embodiments, a module can include a packaging substrate configured to receive a plurality of components. The module can further include an RF component mounted on the packaging substrate and configured to facilitate processing of an RF signal. The module can further include an RF shield disposed relative to the RF component, with the RF shield being configured to provide shielding for the RF component. The RF shield can include at least one shielding-component configured to provide one or more electrical paths between a conductive layer on an upper surface of the module and a ground plane of the packaging substrate. The shielding-component can include a surface-mount device such as an RF filter implemented as a chip size surface acoustic wave (SAW) device (CSSD).
Abstract:
The invention relates to an electrical module (100) for being received by automatic placement machines by means of generating a vacuum, comprising a carrier substrate (10), at least one component (20, 21) disposed on the carrier substrate (10), and a cover element (30) disposed above the at least one component (20, 21). A fixing component (40) by which the cover element (30) is attached to the at least one component (21) is disposed between the cover element (30) and the at least one component (21). The cover element can be implemented as a dimensionally stable, flat film by means of which it is possible to suction the module by means of vacuum for a placement method, and to place said module at a position on a circuit board.