Abstract:
A retention structure which provides both soldering and vibration stabilization of a capacitor as the capacitor is mounted to a printed circuit board (PCB) of an electronic module. An aperture is part of the PCB to stabilize and prevent the capacitor from rolling during manufacturing. Once secured to the PCB, Room Temperature Vulcanization (RTV), or similar adhesive bead, is placed onto a rigidizer or base plate (typically a casted or aluminum sheet plate). Once the capacitor is soldered in place and fixated on the PCB, the assembly is then placed onto the rigidizer such that the PCB is attached to the rigidizer using an adhesive, and the RTV bead contacts and is deformed by the capacitor, connecting the capacitor to the rigidizer to provide vibration stabilization support. The electronic module includes a cover, and optional dampening/constraint pads are attached to the cover of the electrolytic capacitor for additional vibration stabilization.
Abstract:
The disclosure provides a display device including a first substrate, a display region disposed above the first substrate; a second substrate; a sealant disposed between the first substrate and the second substrate and outside the display region; and, a plurality of spacers disposed within the sealant. In particular, the first substrate and the second substrate are bonded together via the sealant. Further, the first substrate has a side wall including a first cutting crack surface and a first median crack surface, wherein a roughness of the first cutting crack surface is different from that of the first median crack surface.
Abstract:
A camera module with compression-molded circuit board is manufactured by compression-molding that can obtain properties such as high flatness, ultra-thin, fine wiring width and high integration.
Abstract:
A cooling structure for large electronic boards with closely-spaced heterogeneous die and packages is disclosed. The assembly includes a frame having a plurality of openings. The assembly further includes a cold plate mounted to the frame. The cold plate includes at least one inlet and at least one outlet and fluid channels in communication with the at least one inlet and the at least one outlet. The assembly further includes a heat sink mounted within each of the plurality of openings which in combination with sidewalls of the openings of the frame and the cold plate form individual compartments each of which are in fluid communication with the fluid channels.
Abstract:
An electronic device module includes a first substrate having at least one or more electronic devices mounted on one surface thereof, a second substrate bonded to one surface of the first substrate and including at least one device accommodating part having a space in which the electronic device is accommodated, and a shielding member disposed in the device accommodating part and accommodating at least one or more electronic devices therein.
Abstract:
A frame 100 containing aperture(s) 102, 103, 104 is positioned on and joined to a permanent substrate 206a or temporary substrate 206b. Electrical component(s) 202, 203, 204 are placed into respective aperture(s) 102, 103, 104 with the leads 504, 1002 of the component(s) 202, 203, 204 positioned on and attached to the permanent substrate 206a or the temporary substrate 206b. Then an encapsulant 402, electrically insulating, but preferably thermally conductive, envelops the component(s) 102, 103, 104. At this point, temporary substrate 206b may be removed exposing component leads 1002. Or, if component(s) 102, 103, 104 are mounted on permanent substrate 206a, vias 502 extend from the surface of substrate 206a to leads 504. With leads 504, 1002 exposed, the completed subassembly 500, 1000 may be incorporated into various forms of reverse-interconnection process (RIP) assemblies as detailed in related applications.
Abstract:
A lens mount is attached to a circuit board and covers electrical components on the circuit board. An electrically insulating device is positioned between the lens mount and the circuit board. The circuit board includes a grounding pad adjacent the electrically insulating device. The lens mount includes an aperture aligned with the grounding pad and the electrically insulating device. A conductive glue is dispensed into the aperture to electrically ground the lens mount to the grounding pad. The electrically insulating device seals the conductive glue from the electrical components. A method of grounding a lens mount to a circuit board is provided.
Abstract:
An electrical component may be mounted on a substrate such as a ceramic substrate. Contacts may be formed on upper and lower surfaces of the substrate. The electrical component may be soldered to the contacts on the upper surface. The contacts on the lower surface may be used to solder the substrate to a printed circuit. During manufacturing, it may be desirable to use metal traces on a ceramic panel to make connections to contacts on the substrate. Following singulation of the ceramic panel to form the ceramic substrate, some of the metal traces may run to the edge of the ceramic substrate. A folded tab of the printed circuit may form a shield that covers these exposed traces. A divided metal-coated groove or a row of divided metal-coated vias running along each edge of the substrate may also provide shielding.
Abstract:
A package module includes a circuit board, an electronic component disposed on the circuit board, a frame disposed next to at least one side of the electronic component, and an encapsulant. A gap is formed between the frame and the electronic component. The encapsulant includes a first portion covering at least a part of the circuit board, and a second portion filling into at least a part of the gap. The first portion has a first height relative to the circuit board, and the second portion has a second height relative to the circuit board, in which the second height is greater than the first height.
Abstract:
An integrated circuit (IC) chip module includes a carrier, a stiffening frame, an IC chip, and a first directional heat spreader. A second directional heat spreader may further be arranged orthogonal to the first directional heat spreader. The carrier has a top surface and a bottom surface configured to be electrically connected to a motherboard. The stiffening frame includes an opening that accepts the IC chip and may be attached to the top surface of the carrier. The IC chip is concentrically arranged within the opening of the stiffening frame. The first directional heat spreader is attached to the stiffening frame and to the IC chip and generally removes heat in a first opposing bivector direction. When included in the IC chip module, the second directional heat spreader is attached to the stiffening frame and to the first directional heat spreader and generally removes heat in a second opposing bivector direction orthogonal to the first opposing bivector direction.