Abstract:
The invention comprises an apparatus and method for simple fluorescence spectrometry in a downhole environment using a UV light source and UV fluorescence to determine a parameter of interest for a sample downhole. The UV light source illuminates the fluid, which in turn fluoresces light. The fluoresced light is transmitted back towards the UV light source and through the pathway towards an optical spectrum analyzer. API gravity is determined by correlation the wavelength of peak fluorescence and brightness of fluorescent emission of the sample. Asphaltene precipitation pressure is determined by monitoring the blue green content ratio for a sample under going depressurization.
Abstract:
A method for providing an intensity or brightness measurement using a digital image-capturing device comprising: selecting a target area within a field of view of the image-capturing device, the target area containing pixels; measuring the intensity or brightness of pixels in a target area; accumulating the intensity or brightness values of the pixels in the target area; and determining a pixel value representative of the intensity or brightness of the pixels in the target area. A device for making color measurements comprising an image-capture device, a processor or logic device, and a memory location for accumulating color data, and the processor or logic device is programmed to perform color measurements by accumulating the data for pixels located in the target area in memory, and determining a representative color value.
Abstract:
Systems, methodologies, media, and other embodiments associated with color measuring are described. One exemplary system embodiment includes a spectrophotometer, one or more light sources for illuminating an interior of the spectrophotometer, and a digital camera configured at a port of the spectrophotometer and being configured to measure light components from a sample. In the present invention, segmentation logic is provided for the spectrophotometer that is configured to employ computational image segmentation to characterize specular reflection from a sample and to characterize a selected patch or portion from the test sample, such as a selected color in a multicolor pattern. In accordance with the present invention, the spectrophotometer and the included digital camera may be color-characterized in situ.
Abstract:
The present invention relates to spectral analysis systems and methods for determining physical and chemical properties of a sample by measuring the optical characteristics of light emitted from the sample. In one embodiment, a probe head for use with a spectrometer includes an optical blocking element for forcing the optical path between the light source and an optical pick-up optically connected to the spectrometer into the sample. The probe head also includes a reference shutter for selectively blocking light emitted from the sample from reaching the optical pick-up to facilitate calibration of the spectrometer.
Abstract:
A diffraction grating and a prism with the appropriate characteristics are employed to provide a combined dispersive characteristic that is substantially linear over the visible spectrum. Radiation from the grating and prism is collimated by a lens towards a detector array. The or a telecentric stop between the grating and prism is placed at a focal point of the lens in a telecentric arrangement so that equal magnification is achieved at the detector array. If the detector array is replaced by a plurality of optical channels, a multiplexer/demultiplexer is obtained.
Abstract:
The invention features an optical medium for calibrating UV absorbance detectors, methods for making such an optical medium, and methods for calibrating UV absorbance detectors using such a medium. The optical calibration medium includes a gel-sol silica glass monolith with a rare-earth dopant therein. The rare-earth dopant exhibits at least one spectral feature in at least the far UV range. The constituents of the gel-sol silica glass monolith are selected so the rare-earth doped sol-gel glass monolith exhibits a transmittance in the far UV range so each distinct spectral feature of the rare-earth dopant in the far UV range is discernable. The transmittance in a particular embodiment is at least about 50% at about 250 nm. The rare earth materials selected for use as dopants are those exhibiting a wide range of spectral features, preferably over a range from about 190 nm to about 700 nm and more particularly exhibit at least one distinct spectral feature in the range from about 190 nm to about 300 nm. In a specific embodiment, the rare-earth dopant includes atoms of erbium, having spectral features in a range from about 190 nm to about 650 nm and a distinguishable far UV spectral feature at about 257 nm.
Abstract:
A monochromator is provided which reduces the amount of stray light striking the detector of the monochromator. A light source is provided which directs light to a source mirror. The source mirror reflects light from the light source through a filter and an entrance slit, and to a first monochromator mirror. The first monochromator mirror collimates the light and reflects it to a diffractive surface. The diffractive surface separates the light into its individual wavelength components. The separated light is directed from the diffractive surface to a second monochromator mirror. The second monochromator mirror directs the light to an exit slit. The present invention reduces stray light to the diffractive surface by tilting the second monochromator mirror off axis at an angle to prevent the reflected light from striking the diffractive surface or directing light out of the plane of diffraction. The exit slit must be at a sufficient elevation above the diffractive surface in the housing to receive the reflected light. The light passes through the exit slit to a sample mirror. From this sample mirror, light is directed through a beam splitter. A portion of this light passes through the beam splitter, through a sample to be analyzed and to a detector. The other portion of the light reflects off of the beam splitter and passes to a second detector. The light striking the first detector (sample detector) is compared to the light striking the second detector (reference detector) so that the properties of the sample may be analyzed.
Abstract:
An apparatus monitors spectral information of an optical transmission system. The apparatus comprises a monolithic spectrometer and at least one transmission signal detector for producing output signals of separated transmission signal components and optical noise.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Low cost and small form factor spectrometers, and methods for manufacturing the same, also are disclosed. Spectrometers and spectrophotometers embedded in printing and scanning and other type devices, as well as computer companion devices, scope-type devices and the like, also are disclosed. Data encoding based on such devices also may be implemented.
Abstract:
A concentric spectrometer which reduces stray light and re-entrant spectra within the spectrometer. The spectrometer includes a non-direct optical path between the entrance slit assembly and exit aperture. Dyson and Offner concentric optical configurations are used to eliminate third-order aberrations The concentric optical system includes a light trap which mitigates or eliminate stray light due to reflection of light incident on the exit aperture region but which does not impinge on the active area of a detector optically coupled to the exit aperture. A two-dimensional area array detector concurrently senses a spectral signal corresponding to an input optical radiation signal and a signal corresponding to zero-input radiation, and the spectral signal is corrected according to the zero-input radiation signal.