Abstract:
A method for manufacturing a printed circuit board is disclosed. When a metal is plated on an upper board to form a circuit, bonding fingers for being bonded with a semiconductor chip are prevented from being electroplated with a metal. That is, a slot with an ink layer formed therein is formed in each of a plurality of boards. Then window regions of different sizes are defined, and a working is carried out on the portion where the slots are not formed. That is, the copper clad laminates are subjected to a working to form slots, and an ink layer is formed within each of the slots. In this manner, during the plating of the upper face of the printed circuit board, the metal is prevented from intruding into the window region, thereby preventing the formation of a short circuit.
Abstract:
A multi-layer printed circuit board provides at least two sections thereon. One section has a grouping of high-impedance traces and another adjacent section, separated by a dividing line, has a mainly low-impedance signal traces. The high-impedance section has at least one of a ground and power plane separated from a grouping of central layers, containing the high-impedance traces, by at least one empty or “void” layer. The void layer is likewise filled by the ground and power planes in the within low-impedance section by stepping the ground/power plane inwardly toward the central layers while providing another low-impedance signal trace in the layer above and below the respective ground and power planes. In a preferred embodiment there are at least nine layers of circuit board material with high-impedance traces on a central grouping of at least three central board layers with three layers disposed respectively above and below the central board layers.
Abstract:
A method 10, 110 for making multi-layer electronic circuit boards 82, 148 having metallized apertures 18, 20, 118, 120 which may be selectively and electrically connected to a source of ground potential.
Abstract:
A method 10 for making a multi-layer electronic circuit board 110 having electroplated apertures 18, 20 which may be selectively and electrically isolated from electrically grounded member 12 and further having selectively formed air bridges and/or crossover members 50 which are structurally supported by material 54, and further having certain exposed connection surfaces 112, selectively and electrically connected to certain electrically conductive members 34, 42, and 44.
Abstract:
A package for semiconductor devices, comprising a core board having a front side with a front side base wiring pattern formed thereon and a back side with a back side base wiring pattern formed thereon, the front and back side wiring patterns being electrically connected to each other through a conductor segment penetrating the core board; a front side laminate of upper wiring patterns with intermediate insulating layers intervening therebetween on the front side base wiring pattern, in which each adjacent pair of the upper wiring patterns are electrically connected to each other through a via plated coating on a side wall of viaholes penetrating one of the intermediate insulating layers that intervenes between the adjacent pair and in which an outermost one of the upper wiring patterns is patterned for electrical connection to a semiconductor chip; a back side laminate of insulating layers on the back side base wiring pattern; an external connection wiring pattern including external connection terminals on the back side laminate of insulating layers; wherein the external connection wiring pattern is electrically connected to the back side base wiring pattern through a via penetrating the back side laminate of insulating layers.
Abstract:
The present invention relates to the production of an improved via for attaching electrical connection pins to printed circuit boards. The inventive via provides a connection having robust mechanical attachment and minimal capacitance effects. The via provides a wide diameter for accepting an electrical connection pin and a reduced diameter along other portions of the length of the via for reduced capacitance and reduced electrical discontinuity.
Abstract:
An electrical connection configuration connects a circuit carrier to conductor tracks of a conductor-track carrier. Both the circuit carrier and the conductor-track carrier are carried by a base plate. The circuit carrier and the conductor-track carrier have a region in which they overlap and in which they are connected by an electrically conductive adhesive.
Abstract:
A printed wiring board includes an insulating layer, conductive layers respectively formed into predetermined circuit patterns on the upper and lower surfaces of at least the insulating layer, and a conducting section formed in a portion of the insulating layer so as to enable electrical connection between the upper and lower conductive layers. A thickness of the insulating layer is varied to change the electric characteristics of the printed wiring board according to a circuit configuration of the conductive layers.
Abstract:
A thin-film metal resistor (44) suitable for a multilayer printed circuit board (12), and a method for its fabrication. The resistor (44) generally has a multilayer construction, with the individual layers (34, 38) of the resistor (44) being self-aligned with each other so that a negative mutual inductance is produced that very nearly cancels out the self-inductance of each resistor layer (34, 38). As a result, the resistor (44) has a very low net parasitic inductance. In addition, the multilayer construction of the resistor (44) reduces the area of the circuit board (12) required to accommodate the resistor (44), and as a result reduces the problem of parasitic interactions with other circuit elements on other layers of the circuit board (12).
Abstract:
A method for fabricating semiconductor components, such as packages, interconnects and test carriers, is provided. The method includes laser machining conductive vias for interconnecting contacts on the component, using a laser beam that is focused to produce a desired via geometry. The vias can include enlarged end portions to facilitate deposition of a conductive material during formation of the vias, and to provide an increased surface area for forming the contacts. For example, by focusing the laser beam at a midpoint of a substrate of the component, an hour glass via geometry is provided. Alternately, the laser beam can be focused at an exit point, or at an entry point of the substrate, to provide converging or diverging via geometries. The method can also include forming contact pins on the conductive vias by bonding and shaping metal wires using a wire bonding process, or a welding process.