Abstract:
An embossed optical waveguide for light transmission and a method for creating a master and for generating the embossed optical waveguide therefrom. In accordance with an exemplary embodiment of the present invention, a layer of liquid polymer is exposed to energy curing radiation through a mask consisting of clear and opaque areas. The opaque areas in the mask correspond to areas in the liquid polymer which will not be exposed to the curing radiation. During exposure, the areas in the liquid polymer which are exposed through the clear areas in the mask to the curing radiation become cured, or hardened. The areas which are not exposed to the curing radiation do not become cured and subsequently are washed away with a chemical rinse. The resulting structure is a cured layer of polymer having holes pierced through it. The holes pierced through the polymer layer correspond to optical elements formed in the polymer layer. Alternatively, these optical elements can be formed in the layer of polymer after it is cured by reactive ion etching or ion beam milling. The polymer layer which has an index of refraction of 1.55 or greater is bonded to a substrate, which is preferably polypropylene, having an index of refraction of preferably 1.50 or less. Since the refractive index of air is approximately 1.0, the polymer layer is sandwiched between two layers of low refractive index material. The differences between the indices of refraction cause light projected into the polymer layer to be guided in the polymer layer by total internal reflection. Furthermore, once the optical elements have been formed in the polymer layer, it can be used as a master for generating embossments. The embossments are preferably generated by placing liquid polymer in contact with the master, curing it, and separating the cured polymer embossment from the master.
Abstract:
Method and apparatus for analyzing radiation using analyzers and encoders employing the spatial modulation of radiation dispersed by wavelength or imaged along a line.
Abstract:
A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.
Abstract:
In a confocal laser scanning microscope with an illuminating configuration (2), which provides an illuminating beam for illuminating a probe region (23), with a scanning configuration (3, 4), which guides the illuminating beam over the probe while scanning, and with a detector configuration (5), which via the scanning configuration (3, 4) images the illuminated probe region (23) by means of a confocal aperture (26) on to at least one detector unit (28), it is provided that the illuminating configuration (2) of the scanning configuration (3, 4) provides a line-shaped illuminating beam, that the scanning configuration (3, 4) guides the line-shaped illuminating beam over the probe f while scanning and that the confocal aperture is designed as a slotted aperture (26) or as a slot-shaped region (28, 48) of the detector unit (28) acting as a confocal aperture.
Abstract:
The present invention is a dispersive, diffraction grating, NIR spectrometer that automatically calibrates the wavelength scale of the instrument without the need for external wavelength calibration materials. The invention results from the novel combination of: 1) a low power He—Ne laser at right angles to the source beam of the spectrometer; 2) a folding mirror to redirect the collimated laser beam so that it is parallel to the source beam; 3) the tendency of diffraction gratings to produce overlapping spectra of higher orders; 4) a “polka dot” beam splitter to redirect the majority of the laser beam toward the reference detector; 5) PbS detectors and 6) a software routine written in Lab VIEW that automatically corrects the wavelength scale of the instrument from the positions of the 632.8 nm laser line in the spectrum.
Abstract:
In preferred forms of the invention an array of MEMS mirrors or small mirrors inside an optical system operates closed-loop. These mirrors direct external source light, or internally generated light, onto an object—and detect light reflected from it onto a detector that senses the source. Local sensors measure mirror angles relative to the system. Sensor and detector outputs yield source location relative to the system. One preferred mode drives the MEMS mirrors, and field of view seen by the detector, in a raster, collecting a 2-D or 3-D image of the scanned region. Energy reaching the detector can be utilized to analyze object characteristics, or with an optional active distance-detecting module create 2- or 3-D images, based on the object's reflection of light back to the system. In some applications, a response can be generated. The invention can detect sources and locations for various applications.
Abstract:
A compact imaging spectrometer comprising an entrance slit, an anamorphic mirror, a grating, and a detector array. The entrance slit directs light to the anamorphic mirror. The anamorphic mirror receives the light and directs the light to the grating. The grating receives the light from the anamorphic mirror and defracts the light back onto the anamorphic mirror. The anamorphic mirror focuses the light onto a detector array.
Abstract:
Disclosed are improvements in ellipsometer and the like systems capable of operating in the Vacuum-Ultra-Violet (VUV) to Near Infrared (NIR) wavelength range, and methodology of use.
Abstract:
An in-vivo blood composition analyzing apparatus and method generates a laser beam at the blood vessels of the patient's eye. The Raman scattered photons from the blood vessels are collected and used to generate a Raman spectrum indicative of the blood composition. In one embodiment, a laser beam is generated with two streams of photons, the photons of one beam being entangled with the photons of the other beam. One stream is then directed at the eye and only the other beam is analyzed to obtain said Raman spectrum. Alternatively, the scattered photons from the second beam are also analyzed and the results are correlated for greater efficiency and accuracy.
Abstract:
A radiation pulse, such as from a solar simulator, is spectrally analyzed over a selected sampling pulse that is shorter in duration than the radiation pulse and is timed to begin after the start of the radiation pulse. A deformable membrane mirror is controlled to function as a high speed shutter in the path of the radiation pulse. When not deformed, the mirror reflects the radiation pulse into an optical instrument, such as a spectroradiometer. A sampling pulse is generated for a selected time after the start of the radiation pulse and is applied to the mirror to ensure total reflection of the radiation pulse only for the duration of the sampling pulse. Controls are provided to adjust the start time and duration of the sampling pulse, and to adjust the sensitivity of sensing the start of the radiation pulse.