Abstract:
A device for determining the surface topology and associated color of a structure, such as a teeth segment, includes a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing color data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the color data and depth data for each point in the array, thereby providing a three-dimensional color virtual model of the surface of the structure. A corresponding method for determining the surface topology and associated color of a structure is also provided.
Abstract:
A diffraction grating and a prism with the appropriate characteristics are employed to provide a combined dispersive characteristic that is substantially linear over the visible spectrum. Radiation from the grating and prism is collimated by a lens towards a detector array. The grating or a telecentric stop between the grating and prism is placed at a focal point of the lens in a telecentric arrangement so that equal magnification is achieved at the detector array. If the detector array is replaced by a plurality of optical channels, a multiplexer/demultiplexer is obtained.
Abstract:
A sensor having a several groups of detectors for gas, agent or interferent detection. The detectors may have various fields of view. The detectors may be placed in particular locations of an array and connected in a certain way as groups such that the resultant groups have essentially the same fields of view. The detectors of a group may be sensitive to the same wavelength of radiation. The array of detectors may be placed in a vacuum sealed package having a substrate and a topcap. The topcap may have bandpass filters on the inside surface over the respective filters for selecting the wavelength of radiation that each detector may detect.
Abstract:
A sensor having a several groups of detectors for gas, agent or interferent detection. The detectors may have various fields of view. The detectors may be placed in particular locations of an array and connected in a certain way as groups such that the resultant groups have essentially the same fields of view. The detectors of a group may be sensitive to the same wavelength of radiation. The array of detectors may be placed in a vacuum sealed package having a substrate and a topcap. The topcap may have bandpass filters on the inside surface over the respective filters for selecting the wavelength of radiation that each detector may detect.
Abstract:
A wireless capsule as a disease diagnosis tool in vivo can be introduced into a biological body by a native and/or artificial open, or endoscope, or an injection. The information obtained from a micro-spectrometer, and/or an imaging system, or a micro-biosensor, all of which are built-in a wireless capsule, can be transmitted to the outside of the biological body for medical diagnoses. In addition, a real-time specimen collection device is integrated with the diagnostic system for the in-depth in vitro analysis
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
A self-cleaning optical probe includes a probe body having a window with a surface oriented toward a sample under investigation. A sampling beam carrying wavelengths representative of the sample passes into the probe body through the window for analysis. A conduit, preferably forming part of the probe body, is used to carry a fluid to the surface of the window oriented toward the sample, and a partition proximate to the window is used to direct the fluid across the window as a laminar flow. The partition further includes an aperture through which the sampling wavelengths pass. This partition also permits a portion of the fluid to pass though the aperture to ensure that the sample under investigation does not reach the window. The fluid may be a liquid or gas, and is preferably a solvent to maximize window cleaning. Although the fluid may be discharged without entering into the environment being sampled, the fluid may also be discharged into the sample, depending upon the application, volume of the respective fluid/sample flows, and other such factors.
Abstract:
A compact imaging spectrometer comprising an entrance slit for directing light, a first mirror that receives said light and reflects said light, an immersive diffraction grating that diffracts said light, a second mirror that focuses said light, and a detector array that receives said focused light. The compact imaging spectrometer can be utilized for remote sensing imaging spectrometers where size and weight are of primary importance.
Abstract:
A method and apparatus for measuring spectral information of light from at least one object includes at least one light detector and at least one transparent body. The transparent body has a front side that has an entrance aperture and at least one reflecting surface. The transparent body also has a back side that includes at least one reflecting surface and an exit surface. The detector is positioned near the exit surface. At least one of the front reflecting surface and the back reflecting surface includes a diffractive optical element arranged to receive diverging light from the aperture. A focusing element focuses diffracted light to the exit surface. The apparatus may comprise multiple channels and may also include a device for measuring a distance to the object.
Abstract:
A wavelength measuring device includes: light receiving elements that receive light to be measured; a temperature controller that maintains the light receiving elements at different temperatures from one another; and a calculation unit that determines the wavelength of the light to be measured, based on outputs of the light receiving elements.