Abstract:
A cabinet capable of guiding light, which is used for detecting a biological sample strained with a fluorescent dye, includes a main body, at least one light source, and at least one light guiding structure. The main body has a sample table to place the biological sample. The at least one light source is provided on the main body and near the sample table, wherein the at least one light source provides light required to excite the fluorescent dye incorporated in the biological sample. The at least one light guiding structure is provided between the sample table and the at least one light source to refract the light provided by the at least one light source onto the sample table and the biological sample. Whereby, the biological sample is exposed to more light, and therefore the intensity of the light released from the biological sample is enhanced.
Abstract:
A threaded connection body (20) is welded to the outer surface of the wall (10) of a pipe, seachest or other flooded cavity (4) within the hull of a ship or floating off-shore installation. A sealed cutting apparatus (50) is mounted via a valve unit (30) on the connection body and a cutter extended through the open valve (34) to form an opening (18) in the wall (10). After retracting the cutter and closing the valve (34), the cutting apparatus is replaced by a sealed inspection unit (70) having a camera (71) which is extended through the valve and the opening to inspect the cavity (4). After retracting the camera and closing the valve, the inspection unit is replaced by a plug deployment unit (100) which is used to advance a plug (120) through the open valve and screw it into the connection body (20). The valve unit (30) can then be removed and replaced with a cap (90) so that the plug and the cap provide a double seal to the connection body.
Abstract:
The present invention relates to a backlight inspection equipment comprising a carrying platform configured to dispose a backlight to be inspected and an inspection plate movably disposed relative to the carrying platform. The inspection plate moves from a first position to a second position. When the inspection plate is disposed at the first position, a first light emitting region of the backlight to be inspected is exposed and a second light emitting region which is a region other than the first light emitting region is blocked. When the inspection plate is disposed at the second position, a third light emitting region of the backlight to be inspected, which is different from the first light emitting region, is exposed, and a fourth light emitting region which is a region other than third light emitting region is blocked.
Abstract:
A device for producing a reproducible identification pattern of a polished gemstone includes light directing means for directing a focused beam of light onto a gemstone orientated in a particular known manner to produce an output of the internal refraction and reflection characteristics of the gemstone including reflected light beams having particular locations, sizes and intensities. The device also includes automated means for changing a position of the gemstone relative to the focused beam of light; and also a means for recording the output in a manner to record the relative size and location of the reflected light beams.
Abstract:
A gas detection device with at least one functional device (1), which is fixed to a platform, is pivotable about at least two pivot axes (2, 3) relative to the platform. The functional device (1) is designed to emit and/or receive or reflect radiation that is analyzably variable due to the presence of a gas to be detected. The gas detection device has an adjusting device (9), which has a fixing device for temporary fixation to the platform and an application device for the defined application on the functional device (1) of forces that lead to a pivoting about the pivot axes (2, 3). The application device acts detachably on the functional device (1).
Abstract:
A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
Abstract:
A liquid measuring system for producing one or more property values of a liquid. The system can include: a thin film device and one or more measuring devices for measuring said one or more property values. The system includes a thin film device for producing a thin film of the liquid on a spinning disk. The system is particularly useful for measuring color and appearance properties of the liquid. The system can be useful for producing coating compositions.
Abstract:
A method for fabricating a microstructure to generate surface plasmon waves comprises steps of: preparing a substrate, and using a carrier material to carry a plurality of metallic nanoparticles and letting the metallic nanoparticles undertake self-assembly to form a microstructure on the substrate, wherein the metallic nanoparticles are separated from each other or partially agglomerated to allow the microstructure to be formed with a discontinuous surface. The present invention fabricates the microstructure having the discontinuous surface by a self-assembly method to generate the surface plasmon waves, thus exempts from using the expensive chemical vapor deposition (CVD) technology and is able to reduce the time and cost of fabrication. The present invention also breaks the structural limitation on generation of surface plasmon waves to enhance the effect of generating the surface plasmon waves.
Abstract:
The infrared detecting element has a first base plate that has a first front surface, a first back surface, a first recessed portion, and an infrared detecting section for detecting infrared rays provided in an area of the first front surface that opposes the first recessed portion; a second base plate that has a second front surface, a second back surface on the opposite side of the second front surface, and a second recessed portion provided in an area of the second back surface that faces the first recessed portion; and an adhesion film that bonds the first back surface and the second back surface, wherein a second outer peripheral portion where the second recessed portion intersects with the second back surface surrounds a first outer peripheral portion where the first recessed portion intersects with the first back surface.
Abstract:
A method includes obtaining an image of a feature machined in a component with an imaging device, determining, by a computing device, a quality of the feature in the component based on the image of the feature, and storing, by the computing device, an indication of the quality of the feature in combination with a unique identifier for the feature in a non-transitory computer-readable medium.