Abstract:
A module is electrically connectable to a computer system. The module includes a first surface and a first plurality of circuit packages coupled to the first surface. The module further includes a second surface and a second plurality of circuit packages coupled to the second surface. The second surface faces the first surface. The module further includes at least one thermal conduit positioned between the first surface and the second surface. The at least one thermal conduit is in thermal communication with the first plurality of circuit packages and the second plurality of circuit packages.
Abstract:
The present invention relates, generally, to electrical power conversion devices and to the universal packaging of those devices for a wide range of applications yielding cost efficient inventory management of product lines consisting of a group of power conversion devices each with minor variations. More specifically, the present invention relates to a universal mounting frame for receiving a printed circuit board in a switch mode power supply. The universal frame is adapted for receiving an open frame or printed circuit board and securing the open frame within a plurality of known packaging configurations. To this end, only a single size printed circuit board is necessary for any type of switch mode power supply configurations, thereby, reducing costs associated with manufacture and testing.
Abstract:
A multi-layer system-on-chip (SoC) module structure is provided. The multi-layer SoC module structure includes at least two circuit board module layers and at least one connector module layer. Each connector module layer is sandwiched between and thus electrically connects two circuit board module layers such that the SoC module structure is formed by stacking. Each circuit board module layer is composed of at least one circuit board module while each connector module layer is composed of at least one connector module. Hence, the SoC module structure can be manufactured as a three-dimensional structure, thus allowing highly flexible connections within the SoC module structure.
Abstract:
Disclosed is a package substrate, which includes an insulating layer including a circuit layer having a via for connecting layers and an insulating member formed in the insulating layer so as to separate the insulating layer, thus preventing the package substrate from warping and reducing land co-planarity of the substrate. A method of fabricating the package substrate is also provided, including (a) forming a first circuit layer on a carrier, (b) forming an insulating layer on the carrier having the first circuit layer, (c) forming an insulating member in the insulating layer so as to separate the insulating layer, (d) forming a second circuit layer including a via on the insulating layer and the insulating member, and (e) removing the carrier.
Abstract:
A power interconnection system comprising a plurality of z-axis compliant connectors passing power and ground signals between a first circuit board to a second circuit board is disclosed. The interconnection system provides for an extremely low impedance through a broad range of frequencies and allows for large amounts of current to pass from one substrate to the next either statically or dynamically. The interconnection system may be located close to the die or may be further away depending upon the system requirements. The interconnection may also be used to take up mechanical tolerances between the two substrates while providing a low impedance interconnect.
Abstract:
In a controller, in particular for motor vehicle transmissions, having a holder (1) on which an electronic circuit component (2) and at least one flexible printed-circuit film (3) connected to the electronic circuit component (2) by means of electric connection means (7) are arranged, it is proposed to arrange on the holder (1) a frame component (5) which surrounds the electronic circuit component (2), and to connect the electric connection means (7) connected to the electronic circuit component electrically to the at least one flexible printed-circuit film (3), through at least one opening (15) in the frame component (5).
Abstract:
There is provided a stacked mounting structure in which, it is possible to carry out testing of each substrate after the formation of (after manufacturing) the stacked mounting structure.The stacked mounting structure includes a first substrate (10) which includes a first electronic component, a second substrate (20) which is disposed facing the first substrate (10), and which includes a second electronic component, an intermediate member (40) which has a space for accommodating the second electronic component, an electroconductive member (7) which is provided to the intermediate member (40), a first electrode for testing (11a) which is electrically connected to the first electronic component, as an electrode for testing an operation of the first electronic component, a connecting electrode toward the second substrate (22a) which is electrically connected to the second electronic component, as an electrode for electrically connecting to the electroconductive member (7), and a second electrode for testing (12a) which is provided to the first substrate as an electrode for testing an operation of the second electronic component, and which is electrically connected to the second electronic component via the electroconductive member (7) and the connecting electrode toward the second substrate (22a).
Abstract:
In a light emitting diode arrangement for lighting purposes, comprising a circuit board with at least one light generating semiconductor element disposed on the circuit board and conductors extending on the circuit board to the semiconductor element and being electrically connected to terminals of the semiconductor element, a light transmissive element is disposed on the circuit board and covers the semiconductor element and a flame resistant cover element is disposed below the light transmissive element and on top of the terminals to cover the terminals to provide for electrical and flame insulation thereof.
Abstract:
A printed circuit board is provided with protection means for protecting one or more components of the printed circuit board (PCB). The protection means includes a sleeve member located on the PCB around at least one component of the PCB. The protection means further includes cover means for covering a whole or substantial part of an opening of said sleeve member. The cover means is formed from or includes mica.
Abstract:
Electronics packages are provided with structure that provides a significantly-reduced package footprint and also facilitates substantial reduction of package fabrication time and cost. The footprint reduction is realized with a frame that defines an aperture wall which surrounds first sets of components on the first side of a printed circuit board and also extends away from the printed circuit board to provide package input/output access along the perimeter of the package footprint. The second side of the printed circuit board receives a second set of components and this set is protected by a board fill. The frame and printed circuit board are configured for realization from frame and board panels whose planar forms substantially reduce package fabrication time and cost because they facilitate the use of modern high-speed printed circuit board (PCB) fabrication processes.