Abstract:
A housing 20 is equipped for supporting, from a side, a platform of a wavelength selection device comprising an input/output port 10, a collimator 11, an expanding optical system 12, a spectroscopic element, a collecting optical system 14 and a micro electro mechanical system (MEMS) mirror array 15. Because the above noted optical member is supported from the side only, influences of a thermal expansion is limited to the height direction of the optical member and the optical axis direction. By these aspects, the influence of thermal expansion is limited to a two-dimensional from a common three-dimensional, thereby enabling a design of a countermeasure to an influence of a thermal expansion. Also, the support from the side does not create a dead space thereby making the wavelength selection device compact.
Abstract:
Increasing signal to noise ratio in optical spectra obtained by spectrophotometers. An interferometer introduces interference effects into a source light beam. A dual beam configuration splits the source beam having the interference effects into a reference beam and a sample beam. The reference beam interacts with a reference substance and is detected by a reference detector. The sample beam interacts with a sample substance and is detected by a sample detector. An optical spectra of the sample is based on the difference between the detected reference beam and the detected sample beam.
Abstract:
A sensor system senses a scene and includes a dual-band imaging infrared detector lying on a beam path, wherein the infrared detector detects infrared images in a first infrared wavelength band and in a second infrared wavelength band; and a two-color cold-shield filter lying on the beam path between the infrared detector and the scene. The cold-shield filter defines a first aperture size for infrared light of the first infrared wavelength band, and a second aperture size larger than the first aperture size for infrared light of the second infrared wavelength band. The first infrared wavelength band has wavelengths less than wavelengths of the second infrared wavelength band.
Abstract:
In one embodiment the disclosure relates to a method and a system for determining the corrected wavelength of a photon scattered by a sample. The method includes the steps of determining a wavelength of a photon scattered from a sample exposed to illuminating photons and passed through a tunable filter and correcting the determined wavelength of the photon as a function of the temperature of the tunable filter and as a function of the bandpass set point of the tunable filter. The step of correcting the determined wavelength can further include determining an offset and adding the offset to the determined wavelength of the photon.
Abstract:
An optical performance monitor for measuring the performance of optical networks has an echelle grating for demultiplexing an input beam into a plurality of wavelengths that are focused onto an array of divided output waveguides. Each divided output waveguide is positioned to receive a corresponding demultiplexed wavelength from the echelle grating or other waveguide multiplexer device. The divided output waveguides laterally separate the corresponding demultiplexed wavelength into a first and second portions. A detector array is positioned to receive the respective portions of the demultiplexed wavelengths and by comparing their relative intensity it is possible to detect any drift in the nominal wavelengths of the channels.
Abstract:
A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. The system further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The light source is utilized to create a light beam that travels through at least a portion of the environmentally controlled chambers. The light beam may be a collimated light beam at locations where the light beam passes between at least two of the environmentally controlled chambers. A coupling mechanism may be provided that optically couples at least two the environmentally controlled chambers. Collimated light may be provided through the coupling mechanism. Array based detection instrumentation may be exploited to permit the simultaneous collection of larger wavelength regions.
Abstract:
The present invention provides a weathering test apparatus system capable of accurately monitoring deterioration of a light source used in a weathering test apparatus. According to the present invention, there is provided a weathering test apparatus system, which comprises a weathering test apparatus with a light source and a spectroradiometer which monitors deterioration of the light source, wherein the spectroradiometer comprises an entrance window which captures light from the light source, and a spectroscopic unit which is connected optically to the entrance window and has a multi-wavelength resolution function, the spectrometer being disposed inside the weathering test apparatus.
Abstract:
Systems and methods for applying different color calibrations at different locations in an imaging photometer measurement are disclosed herein. In one embodiment for example, a method for measuring a source of light having a first area with a first spectral distribution and a second area having a second spectral power distribution different than the first spectral power distribution can include selecting one or more data points in the first area for measurement. The method then includes applying a calibration to the selected data points in the first area such that a desired colorimetric result is displayed for each data point in a single colorimetric measurement of the first area. In several embodiments, the method can further include selecting one or more data points in the second area, and then applying a different calibration to the selected portions of the second area such that a desired calorimetric result is also displayed for each data point in the second area.
Abstract:
A method for stabilizing the temperature of an LED is provided. A method is provided that includes providing a system comprising an LED, a reaction region, and a sample in the reaction region; generating excitation beams with the LED; directing excitation beams to the sample; detecting an optical property of the sample to obtain detection data; measuring the operating temperature of the light emitting diode; and adjusting the detection data of an excitation beam characteristic shift related to the operating temperature, when the LED is operated at the operating temperature to generate the excitation beams.
Abstract:
A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. Additionally, the system incorporates an optical module which presents selectable sources and detectors optimized for use in the VUV and DUV-NIR. As well, the optical module provides common delivery and collection optics to enable measurements in both spectral regions to be collected using similar spot properties. The module also provides a means of quickly referencing measured data so as to ensure that highly repeatable results are achieved. The module further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The use of broad band data sets which encompass VUV wavelengths, in addition to the DUV-NIR wavelengths enables a greater variety of materials to be meaningfully characterized. Array based detection instrumentation may be exploited to permit the simultaneous collection of larger wavelength regions.