Abstract:
Light to be sensed is spreaded across an entry surface of a transmission structure with a laterally varying energy transmission function. For example, the light could be output from a stimulus-wavelength converter, provided through an optical fiber, or it could come from a point-like source or broad area source. Output photons from the transmission structure can be photosensed by photosensing components such as an array, position sensor, or array of position sensors. Wavelength information from the light can be obtained in response to the photosensing component. Spreading can be performed by air, gas, transparent material, or vacuum in a gap, by a region or other part of a lens, or by an optical fiber end surface. If the light comes from more than one source, a propagation component can both spread the light and also keep light from the sources separate.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
Plural electronic or optical images are provided in a streak optical system, as for instance by use of plural slits instead of the conventional single slit, to obtain a third, fourth, etc. dimension—rather than only the conventional two, namely range or time and azimuth. Such additional dimension or dimensions are thereby incorporated into the optical information that is to be streaked and thereby time resolved. The added dimensions may take any of an extremely broad range of forms, including wave-length, polarization state, or one or more spatial dimensions—or indeed virtually any optical parameter that can be impressed upon a probe beam. Resulting capabilities remarkably include several new forms of lidar spectroscopy, fluorescence analysis, polarimetry, spectropolarimetry, and combinations of these, as well as a gigahertz wavefront sensor.
Abstract:
An image sensing system for a vehicle includes an imaging sensor and a logic and control circuit. The imaging sensor comprises a two-dimensional array of light sensing photosensor elements formed on a semiconductor substrate and is disposed at an interior portion of the vehicle proximate the windshield of the vehicle and has a forward field of view to the exterior of the vehicle through an area of the windshield. The logic and control circuit comprises an image processor for processing image data derived from the imaging sensor. The logic and control circuit generates at least one control output. The image sensing system detects lane markers on a road being traveled by the vehicle and present in the field of view of the imaging sensor.
Abstract:
Systems and techniques for improved spectroscopy. In some embodiments, mechanical and/or optical zoom mechanisms may be provided for monochromator systems. For example, movable detector systems allow a detector to be positioned with respect to a dispersive element in order to obtain a first resolution. The detector systems may then allow the detector to be positioned with respect to a dispersive element to obtain a second different resolution. In some embodiments, spectroscopy of a first sample region may be performed using a plurality of excitation wavelengths. Multiple detectors may be positioned to receive light associated with different ones of the plurality of excitation wavelengths.
Abstract:
A spectrometer for use with a desired wavelength range includes an array of filters. Each filter outputs at least two non-contiguous wavelength peaks within the desired wavelength range. The array of filters is spectrally diverse over the desired wavelength range, and each filter in the array of filters outputs a spectrum of a first resolution. An array of detectors has a detector for receiving an output of a corresponding filter. A processor receives signals from each detector, and outputs a reconstructed spectrum having a second resolution, the second resolution being higher than any of the first resolution of each filter.
Abstract:
A multi-spectral image capturing apparatus having different spectral sensitivity characteristics of at least four bands comprises an imaging optical system, a camera section including single-panel color image capturing section, and a split optical system configured to split a light beam of an image from the imaging optical system into plural light beams, and form images again respectively on split image formation planes. The single-panel color image capturing section of the camera section has an image formation position on the split image formation planes.
Abstract:
A tunable bolometer device for detecting infrared light (IR) from a target at specific frequencies and in a broadband mode. The device may have an array of pixels of which each is controllable to be sensitive to a particular wavelength of light that is selected and detected. The detection of particular frequencies on a pixel level may result in spectral analysis of the target. Further, each pixel of the bolometer via an associated etalon may be tuned to detect a different frequency of IR or be switched to broadband detection of IR. The device may be packaged in an integrated vacuum package where the etalon array becomes the topcap which is bonded to the wafer containing the bolometer array.
Abstract:
A common aperture, multi-mode optical imager for imaging electromagnetic radiation bands from a field of two or more different wavelengths is described. Fore-optics are provided to gather and direct electromagnetic radiation bands forming an image into an aperture of the multi-mode optical imager. The image is divided into two different wavelength bands, such as visible light and long-wave infrared. The first wavelength band (e.g., visible light) is detected by a first detector, such as a CCD array, for imaging thereof. The second wavelength band (e.g., long-wave infrared) is detected by a second detector, such as an uncooled microbolometer array, for imaging thereof. Additional optics may be provided for conditioning of the first and second wavelength bands, such as such as for changing the magnification, providing cold shielding, filtering, and/or further spectral separation.