Abstract:
The present disclosure relates to a color measurement apparatus (100) for measuring a color on a printed item (9). The color measurement apparatus (100) comprises a first body (1), a second body (2) including a sensor (26) for measuring color data of a printed item (9), and a guiding rail (3). The second body (2) is movable relative to the first body (1) along a measurement direction (210) and the guiding rail (3) guides the movement of the second body (2) relative to the first body (1). The guiding rail (3) is positioned between the first body (1) and the second body (2). The second body (2) is slidingly mounted on the guiding rail (3) and can slide along the guiding rail (3) in a first sliding direction (210); the guiding rail (3) is slidingly mounted on the first body (1) and can slide along the first body (1) in a second sliding direction (310) parallel to the first sliding direction (210). The movement of the second body (2) relative to the first body (1) is a combined movement including a sliding movement of the second body (2) relative to the guiding rail (3) and a sliding movement of the guiding rail (3) relative to the first body (1).
Abstract:
This invention discloses a handheld Raman spectrometer. The handheld Raman spectrometer comprises: (i) a handheld enclosure; (ii) a volume Bragg grating stabilized laser mounted in the handheld enclosure for producing laser light; (iii) a Raman probe for delivering the laser light to a subject to produce Raman scattered light from the subject and collecting the Raman scattered light; (iv) a spectrometer mounted in the handheld enclosure for measuring the Raman scattered light and obtaining a Raman spectrum; (v) a high brightness display mounted in the handheld enclosure for displaying the obtained Raman spectrum; (vi) a multi-touch screen mounted on top of the high brightness display for receiving user inputs; (vii) a central processing unit mounted in the handheld enclosure for processing user inputs and controlling operation of the handheld Raman spectrometer; and (viii) a user interface based on the high brightness display, the multi-touch screen, and the central processing unit, the user interface is programmed to be capable to respond to user inputs incurring at least two points of contact with the multi-touch screen.
Abstract:
Disclosed is a portable handheld characteristic analyzer used to analyze chemical compositions in or near real-time. One method of using the analyzer to determine a characteristic of a sample includes directing the handheld characteristic analyzer at the sample, the handheld characteristic analyzer having at least one integrated computational element arranged therein, activating the handheld characteristic analyzer, thereby optically interacting the at least one integrated computational element with the sample and generating optically interacted light, receiving the optically interacted light with at least one detector arranged within the handheld characteristic analyzer, generating an output signal corresponding to the characteristic of the sample with the at least one detector, receiving the output signal with a signal processor communicably coupled to the at least one detector, and determining the characteristic of the sample with the signal processor.
Abstract:
A multi-angle colorimeter employs a multi-angle mode and a symmetrical arrangement mode in an optical arrangement. Light detection on both sides of the symmetrical arrangement is performed by a single photodetector unit. The photodetector unit is used on both sides, and thus, the device becomes simpler, without any impact on individual difference in characteristics of multiple photodetector units. Conversely, elements for illumination can be used on both sides. Also in a case where multiple photodetector units are used, the size and cost of the device can be reduced with the use of a photodetector unit having a relatively low wavelength resolution as a photodetector unit to be used on one side. This enables to reduce an attitude error due to relative tilting of a measurement surface while reducing the size and cost of the device.
Abstract:
A Raman spectrometer including a laser excitation source, edge filters, and detection optics that direct light into a spectrograph. A spectrograph containing a dispersive element and optics that directs various wavelengths of light onto a segmented diffractive MEMS light modulator array. The MEMS array, depending on actuation state, directs light either to or away from a single detector. Control electronics drive the MEMS light modulator for either sequential wavelength measurement or multiplexed wavelength measurement (Hadamard for example).
Abstract:
An apparatus for obtaining an image of a tooth having at least one light source providing incident light having a first spectral range for obtaining a reflectance image from the tooth and a second spectral range for exciting a fluorescence image from the tooth. A polarizing beamsplitter in the path of the incident light from both sources directs light having a first polarization state toward the tooth and directs light from the tooth having a second polarization state along a return path toward a sensor, wherein the second polarization state is orthogonal to the first polarization state. A first lens in the return path directs image-bearing light from the tooth toward the sensor, and obtains image data from the portion of the light having the second polarization state. A long-pass filter in the return path attenuates light in the second spectral range.
Abstract:
A spectrum sensing method includes (a) receiving an incident radiation simultaneously through a filter array composed of multiple bandpass filters, (b) digitizing spectral responses of the filter array, and (c) generating an estimate of spectral profile of the incident radiation based on digitized spectral responses of the filter array.
Abstract:
Fiber optic probe scatterometers for spectroscopy measurements are disclosed. An example device includes an optically transparent illumination tube, an opaque tube, an inner surface of the opaque tube being adjacent an outer surface of the illumination tube and the illumination tube being disposed within the opaque tube, and an optical fiber disposed within and spaced a first distance from the illumination tube, wherein the opaque tube is to be coupled to a spectrometer and an illumination source to provide a light signal along the illumination tube and to collect a scattered light signal via the optical fiber for the spectrometer.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
Based on the present invention, superior compact spectrometers may be constructed and integrated into a cellular phone, or attached to a cellular phone. Such a cellular phone may be a PDA phone, which supplies electrical power to the said spectrometer, provided with data storage, signal processing capability, and real-time display. As a combined standalone system, it allows spectroscopic measurements to be fulfilled in real-time applications in field, and results can be sent out in wireless communication to a remote station or to another cellular phone user in order to share the measurement results right away. When the system is used with a laser to function as a Raman spectrometer system, it can fulfill many daily routine tasks encountered by ordinary civilians, for example, the blood glucose monitoring for diabetes patients at home in a non-invasive manner.