Abstract:
A spectroscopic sensor that applies lights in a wavelength band containing plural wavelengths to an object and spectroscopically separates reflected lights or transmitted lights from the object using plural light band-pass filters that transmit the respective specific wavelengths and plural photosensor parts to which corresponding transmitted lights are input based on output results of independent photosensors. The spectroscopic sensor may be integrated in a semiconductor device or module by integration using a semiconductor process and downsizing may be realized.
Abstract:
A spectral module 1 comprises a substrate 2 for transmitting light L1 incident thereon from a front face 2a, a lens unit 3 for transmitting the light L1 incident on the substrate 2, a spectroscopic unit 4 for reflecting and spectrally resolving the light L1 incident on the lens unit 3, and a photodetector 5 for detecting light L2 reflected by the spectroscopic unit 4. The substrate 2 is provided with a recess 19 having a predetermined positional relationship with alignment marks 12a, 12b and the like serving as a reference unit for positioning the photodetector 5, while the lens unit 3 is mated with the recess 19. The spectral module 1 achieves passive alignment between the spectroscopic unit 4 and photodetector 5 when the lens unit 3 is simply mated with the recess 19.
Abstract:
Calibration of an arbitrary spectrometer can use a stable monolithic interferometer as a wavelength calibration standard. Light from a polychromatic light source is input to the monolithic interferometer where it undergoes interference based on the optical path difference (OPD) of the interferometer. The resulting wavelength-modulated output beam is analyzed by a reference spectrometer to generate reference data. The output beam from the interferometer can be provided to an arbitrary spectral instrument. Wavelength calibration of the arbitrary spectral instrument may then be performed based on a comparison of the spectral instrument output with the reference data. By appropriate choice of materials for the monolithic interferometer, a highly stable structure can be fabricated that has a wide field and/or is thermally compensated. Because the interferometer is stable, the one-time generated reference data can be used over an extended period of time without re-characterization.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like.
Abstract:
Alignment marks 12a, 12b, 12c, and 12d are formed on the flat plane 11a of the peripheral edge portion 11 formed integrally with the diffracting layer 8, and when the lens portion 7 is mounted onto the substrate 2, these alignment marks 12a, 12b, 12c and 12d are positioned to the substrate 2, thereby making exact alignment of the diffracting layer 8 with respect to the light detecting portion 4a of the light detecting element 4, for example, not by depending on a difference in curvature radius of the lens portion 7. In particular, the alignment marks 12a, 12b, 12c and 12d are formed on the flat plane 11a, thereby image recognition is given to exactly detect positions of the alignment marks 12a, 12b, 12c and 12d, thus making it possible to make exact alignment.
Abstract:
The spectroscopy module 1 is provided with a body portion 2 for transmitting light L1, L2, a spectroscopic portion 3 for dispersing light L1 made incident from the front plane 2a of the body portion 2 into the body portion 2 to reflect the light on the front plane 2a, a lisht detecting element 4 having a lisht detecting portion 41 for detecting the light L2 dispersed and reflected by the spectroscopic portion 3 and electrically connected to a wiring 9 formed on the front plane 2a of the body portion 2 by face-down bonding, and an underfill material 12 filled in the body portion 2 side of the lisht detecting element 4 to transmit the light L1, L2. The lisht detecting element 4 is provided with a light-passing hole 42 through which the light L1 advancing into the spectroscopic portion 3 passes, and a raised portion 43 in a rectangular annular shape is formed on a rear plane 4a of the body portion 2 side in the lisht detecting element 4 so as to enclose a light outgoing opening 42b of the light-passing hole 42.
Abstract:
The spectroscopy module 1 is provided with a body portion 2 for transmitting light L1, L2, a spectroscopic portion 3 for dispersing light L1 made incident from the front plane 2a of the body portion 2 into the body portion 2 to reflect the light on the front plane 2a, a light detecting element 4 having a light detecting portion 41 for detecting the light L2 dispersed and reflected by the spectroscopic portion 3 and electrically connected to a wiring 9 formed on the front plane 2a of the body portion 2 by face-down bonding, and an underfill material 12 filled in the body portion 2 side of the light detecting element 4 to transmit the light L1, L2. The light detecting element 4 is provided with a light-passing hole 42 through which the light L1 advancing into the spectroscopic portion 3 passes, and a reservoir portion 43 is formed on a rear plane 4a of the body portion 2 side in the light detecting element 4 so as to enclose a light outgoing opening 42b of the light-passing hole 42.
Abstract:
To monitor light pulses from a light source, such as a laser, sense signals are provided to a photosensing component or array, causing photosensing during a series of one or more sense periods for the light pulse. Each light pulse can be provided through a transmission structure, such as a layered structure, that provides output light with an energy-dependent position on the photosensing component. A pulse's sensing results can be used to obtain a set of one or more differential quantities; for example, with a photosensing array, two cells of the array can be read out and compared. For a narrow band light pulse, a transmission structure can provide a spot on the photosensing component, and the light spot position can be sensed.
Abstract:
Since a spectroscopic module (1) has a plate-shaped body section (2), the spectroscopic module can be reduced in size by reducing the thickness of the body section (2). Moreover, since the body section (2) is plate-shaped, the spectroscopic module (1) can be manufactured, for example, by using a wafer process. More specifically, by providing lens sections (3), diffraction layers (4), reflection layers (6) and light detecting elements (7) in a matrix form on a glass wafer which becomes many body sections (2) and dicing the glass wafer, many spectroscopic modules (1) can be manufactured. This enables easy mass production of spectroscopic modules (1).
Abstract:
The present invention relates to a bispectral detection device, particularly of an infrared radiation and a visible radiation, including a monolithic substrate; an array of bolometric micro-bridges sensitive to infrared radiation, the bolometric micro-bridges being suspended over a first face of the substrate by means of support and connection arms; and an array of photoelectric elements fowled in the substrate, and sensitive to visible radiation, the bolometric micro-bridges and the photoelectric elements being stacked. According to the invention, the substrate portion between the photoelectric element array and a second face of the substrate, opposite to the first face thereof, is thinned so that the photoelectric elements are capable of detecting a visible radiation incident on the second face.