Abstract:
A package substrate and a semiconductor package are provided. The package substrate includes an insulating layer having opposing first and second surfaces; a first wiring layer formed in the insulating layer, exposed from the first surface of the insulating layer, and having a plurality of first conductive pads; a second wiring layer formed in the insulating layer, exposed from the second surface, and having a plurality of second conductive pads; a third wiring layer formed on the first surface and electrically connected with the first wiring layer; a plurality of first metal bumps formed on the first conductive pads corresponding; and at least one conductive via vertically embedded in the insulating layer and electrically connected to the second and third wiring layers. Therefore, the surfaces of first conductive pads are reduced, and the non-wetting between the first conductive pads and the solder materials formed on conductive bumps is avoided.
Abstract:
A method for manufacturing a printed wiring board with conductive posts includes forming on a first foil provided on carrier a first conductive layer including mounting pattern to connect electronic component via conductive posts, forming on the first foil a laminate including an insulating layer and a second foil to form the laminate on the first conductive layer, removing the carrier, forming a metal film on the laminate and first film, forming resist on the metal film to have pattern exposing portion of the metal film corresponding to the mounting pattern and portion of the second foil for a second conductive layer, forming an electroplating layer on the portion of the metal film not covered by the resist, removing the resist, and applying etching to remove the first and second foils below the metal film exposed by the removing the resist and to form the posts on the mounting pattern.
Abstract:
A printed wiring board includes an insulating layer, a first conductor layer embedded into first surface of the insulating layer and including multiple wirings such that the wirings include connecting portions positioned to connect an electronic component, respectively, a second conductor layer projecting from second surface of the insulating layer on the opposite side, a solder resist layer formed on the first surface of the insulating layer such that the solder resist layer is covering the first conductor layer and has an opening structure exposing the connecting portions of the wirings, and multiple metal posts formed on the connecting portions respectively such that each of the metal posts has a width which is larger than a width of a respective one of the wirings having the connecting portions. The wirings are formed such that the connecting portions are positioned side by side on every other adjacent one of the wirings.
Abstract:
A package structure includes a substrate, an insulator, a plurality of pads and a patterned circuit layer. The substrate includes a plurality of through holes. The insulator covers the substrate and is filled in the through hole. The conductive vias are located in the through holes and penetrate the insulator filled in the through holes. The pads are disposed on an upper surface and a lower surface of the insulator and electrically connected to the conductive vias. A bottom surface of each pad is lower than the top surface of the insulator. The patterned circuit layer is disposed on the top surface of the insulator and connected to the conductive vias and the pads. A bottom surface of the patterned circuit layer is lower than the top surface of the insulator.
Abstract:
A wiring substrate includes a core layer having a penetrating hole, a first insulating layer disposed on a first surface of the core layer and having a first opening at a position of the penetrating hole, the first insulating layer containing no filler, a penetrating electrode disposed in the penetrating hole and in the first opening, and a first wiring layer laminated both on the first insulating layer at a first surface thereof facing away from the core layer and on an end face of the penetrating electrode, wherein the first surface of the first insulating layer and the end face of the penetrating electrode are planarized.
Abstract:
A semiconductor structure includes an insulating layer, a plurality of stepped conductive vias and a patterned circuit layer. The insulating layer includes a top surface and a bottom surface opposite to the top surface. The stepped conductive vias are disposed at the insulating layer to electrically connect the top surface and the bottom surface. Each of the stepped conductive vias includes a head portion and a neck portion connected to the head portion. The head portion is disposed on the top surface, and an upper surface of the head portion is coplanar with the top surface. A minimum diameter of the head portion is greater than a maximum diameter of the neck portion. The patterned circuit layer is disposed on the top surface and electrically connected to the stepped conductive vias.
Abstract:
A carrier-attached copper foil having good circuit formability is provided. The carrier-attached copper foil has a carrier, an intermediate layer and an ultra-thin copper layer in this order, the average grain size of crystal grains that form the ultra-thin copper layer is 1.05 to 6.5 μm, and a ten point average roughness Rz of a surface on a side of the ultra-thin copper layer is 0.1 to 2.0 μm.
Abstract:
A light source module includes at least one light source, and a body supporting the light source. The body includes a heat sink supporting the light source on a top surface thereof, the heat sink absorbing heat from the light source and dissipating the heat to the outside, an insulating layer provided on at least one surface of the heat sink, the insulating layer having electrical insulating properties, and a conductive layer provided on the insulating layer. The conductive layer includes connection regions through which electric current is supplied to the light source, and a light source region disposed between the connection regions, the light source region having the light source mounted therein. A protective layer is stacked in the connection region. Accordingly, it is possible to obtain effects such as rapid fabrication processes, inexpensive fabrication cost, facilitation of mass production, improvement of product yield, protection of a conductive material, improvement of the lifespan of products, and enhancement of the stability of products.
Abstract:
A wiring board of the present disclosure includes an insulating layer and a wiring conductor. The wiring conductor is buried in an insulating layer in such a manner as to have a top surface exposed to a surface of the insulating layer. The wiring conductor includes, at a portion buried in the insulating layer, a wiring level difference part or a wiring inclined part having a width larger than a width of the top surface.
Abstract:
The invention relates to an angle-adjustable and/or printed circuit board structure having at least two printed circuit board sections arrangeable or arranged angularly with respect to one another, wherein the printed circuit board structure contains at least one conduction element which is embedded at least predominantly in the printed circuit board structure and which extends between two contact pads and is electrically conductively connected to said contact pads, wherein the two contact pads are situated on different printed circuit board sections, wherein the printed circuit board sections are angle-adjustable and/or angled relative to one another with maintenance of the connections between the contact pads and the at least one conduction element and with bending of the at least one conduction element via a bending edge between the printed circuit board sections. In order to improve the electrical and mechanical connection between the printed circuit board sections, the invention provides for the conduction element to have a larger extent along the bending edge than perpendicularly thereto, as viewed in cross section. A corresponding method for producing this printed circuit board structure is like wise claimed.