Abstract:
The semiconductor device according to the present invention is equipped with a plurality of electronic circuits including at least one semiconductor integrated circuit chip, and a plurality of intermediate substrates interposed between the electronic components and a package and mounting the electronic components directly on its one major face, where each of the electronic component has on the one major face at least a plurality of first electrodes connected to the electronic components, a plurality of second electrodes for external connection, and internal connection electrodes for connecting between the electronic components including the connection between the first electrodes and the second electrodes that are mutually corresponding.
Abstract:
A Z-axis electrical contact may be formed using a resinous deposit containing conductive particles which may align along surface regions to form an electrical conduction path over the resinous material. If the resinous material is thermoplastic, the material may be heated to mechanically bond to contact surfaces. Advantageously, the resinous material may be formed by forcing a resinous matrix containing conductive particles through an annular opening in a stencil. The resulting member allows surfaces to be contacted which may be irregular or may be covered by native oxide layers.
Abstract:
A plug-in type electronic control unit is comprised of a wiring board, a plurality of electronic parts mounted on one surface of the wiring board by utilizing a wireless bonding process, and a plug member mounted on the other surface of the wiring board by utilizing a wireless bonding process. It is possible to suppress the planar extent of the unit by such a laminated structure, and to suppress the extent of the unit in a laminating direction by the employment of the wireless bonding process. Thus, it is possible to achieve a reduction in size of the plug-in type electronic control unit.
Abstract:
A method for producing a wiring substrate provided with bumps protruding from a surface of the substrate, the method comprising the steps of: covering one side of a metallic base with an electrical insulating film and forming open holes in the insulating film so as to expose at the bottoms thereof the base, etching the base using the insulating film having the open holes formed as a mask to form concavities in the base, electroplating the interior face of each of the concavities using the base as a plating power supply layer to form a barrier metal film on the interior face of each concavities, filling the concavities with a material for the bump by electroplating using the base as a plating power supply layer, forming a barrier layer on the surface of the material for the bump filled in each of the concavities using the base as a plating power supply layer, forming a stack of a predetermined number of wiring patterns on the insulating film, the adjacent wiring patterns in the stack being separated from each other by an intervening insulating layer and being connected to each other through vias formed in the intervening insulating layer, and the wiring patterns being electrically connected to the material for the bump filled in the concavities, removing the base from the stack of wiring patterns having bumps each having the barrier metal film, and removing the barrier metal film from each of the bumps.
Abstract:
A contacting component has a probe contact formed by plating and adapted to be contacted with a target portion. The probe contact is made of a polycrystalline material having a crystal grain size not smaller than 10 nm and not greater than 40 nm
Abstract:
The field of the manufacture of electronic components, specifically to manufacturing flexible conductive strips having contact pads thereon, wherein a first set of alignment marks are provided on a substrate. Using the first set of alignment marks, several electronic components are formed in selected positions on the substrate. The electronic components may be formed in various groups, with a first group being formed using a first mask then, subsequent groups being formed using subsequent masks. Each of the respective masks are aligned with the first set of alignment marks in order to position the electronic components formed using the masks at the desired locations on the substrate. A second set of alignment marks are produced using the same mask as a set of electronic components that are located on the substrate. Subsequently, when a different set of features is produced, it is positioned using the second set of alignment marks located on the individual parts. Thus, tolerances can be achieved that would normally be possible only in the manufacture of individual parts, while still obtaining the advantages of the economies of scale possible by making many parts on a large sheet.
Abstract:
A method of engaging electrically conductive test pads on a semiconductor substrate having integrated circuitry for operability testing thereof includes: a) providing an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate; b) engaging the grouping of apexes with the single test pad on the semiconductor substrate; and c) sending an electric signal between the grouping of apexes and test pad to evaluate operability of integrated circuitry on the semiconductor substrate. Constructions and methods are disclosed for forming testing apparatus comprising an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate.
Abstract:
A method of forming a printed circuit board comprising a plurality of conductive bumps with substantially coplanar upper surfaces. The method comprises the steps of applying a metal layer onto a dielectric substrate; applying a first photoresist onto said substrate and exposing and developing said first photoresist to define a pattern of conductive bumps; etching the metal layer exposed by said development to form said plurality of conductive bumps; removing said first photoresist; applying a second photoresist onto the metal layer; exposing and developing said second photoresist to define a pattern of conductive bumps and circuit lines; etching the metal layer exposed by said development to form a pattern of circuit lines in said metal layer; and removing said second photoresist. The present invention is also provides a method for preparing a reinforced panel.
Abstract:
A packaged electronic device includes connection contacts that are formed on the contact pads on the second surface of the substrate. In contrast to the prior art, the connection contacts are not solder contacts but are formed of nickel/aluminum plated copper and are therefore harder and less malleable and subject to deformation than prior art solder balls. The connection contacts are formed to align with, and contact, attachment pads formed on the motherboard or other system component. A tension device is then used to mechanically attach the packaged electronic device of the invention to the motherboard.
Abstract:
A plurality of lands are arranged in rows. The lands in adjacent rows are disposed in a staggered arrangement. A first interconnecting line is pulled out from each of the lands. Each of the lands is wider than the first interconnecting line in the row direction. A plurality of electrical connection sections are arranged in rows. The electrical connection sections in adjacent rows are disposed in a staggered arrangement. The lands are electrically connected with the electrical connection sections so as to overlap. Each of the electrical connection sections is a part of a second interconnecting line, and an insulating layer is formed between the second interconnecting lineing pattern other than the electrical connection sections and the first interconnecting lineing pattern.