Abstract:
A method for standardizing a spectrometer generating an optical spectrum from a sample, comprising generating at least one optical spectrum from at least one standardization sample each having a chemical composition resulting in the optical spectrum showing a characteristic pattern in a predetermined frequency range, comparing information relating to the pattern(s) to corresponding information relating to at least one reference pattern previously defined as the desired standard response from the at least one standardization sample, determining, based on the comparison, standardizing parameters describing the transition of the pattern(s) of the generated spectrum or spectra to the reference pattern(s) and storing said standardizing parameters in the spectrometer or a computer connected thereto, so that the spectrometer, when presented to an unknown sample, will, using the standardization parameters, generate an optical spectrum substantially identical to that which would be generated in a corresponding spectrometer standardized with a sample of the same chemical composition using the same previously defined reference pattern(s). The present method relates to standardization of the instrument to a well-defined state into which any number of instruments may be brought. In this state, calibrations may be transferred freely from instrument to instrument.
Abstract:
An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g.
Abstract:
A spectroscopic system that processes spatially dispersed electromagnetic emissions at a number of wavelengths from a test material. The spectroscopic system includes a converter that generates an electrical signal that is proportional to the intensity of electromagnetic radiation received by the converter. An optical delay circuit is coupled to an input of the converter. The optical delay circuit selectively delays application to the converter of electromagnetic emissions from the test material for at least one wavelength of electromagnetic emissions. A data processing circuit is coupled to an output of the converter. The data processing circuit records the value of the electrical signal from the converter over time so as to measure, contemporaneously, the intensity of electromagnetic emissions at each wavelength as a function of time.
Abstract:
A laser is used in the detection of explosives residue by creating micro-detonations of explosive particles adhered to objects. An object is scanned with a beam of coherent laser light to induce micro-detonations of micro-particles of explosive residue adhered to the object. Temporal and spectral information representative of light emitted by the micro-particles is used to characterize the explosives.
Abstract:
A calibration method and device for a fluorescence spectrometer which uses fluorescence from a homogeneous solid state standard as the source of calibration fluorescence and wherein the solid state standard may be built into the optical scanner and the calibration may be automatically performed as a routine step when using the optical scanner. A gold standard establishes fluorescent units, and the fluorescence spectrometer is calibrated by reference to calibration standards, such as calibration rubies, which are themselves rated against the gold standard and built into the fluorescence spectrometer to provide an unchanging reference to the gold standard and by which simultaneous calibration of two or more channels of a multi-channel fluorescence spectrometer may be accomplished, including automatically calibrating a multi-channel optical scanner when it is turned on to achieve an acceptable level of sensitivity in each channel and to adjust for any relative shift in sensitivity between the channels.
Abstract:
A method and apparatus for measuring partial pressures of gaseous components within a mixture. The apparatus comprises generally at least one tunable laser source, a beam splitter, mirrors, optical filter, an optical spectrometer, and a data recorder. Measured in the forward direction along the path of the laser, the intensity of the emission spectra of the gaseous component, at wavelengths characteristic of the gas component being measured, are suppressed. Measured in the backward direction, the peak intensities characteristic of a given gaseous component will be wavelength shifted. These effects on peak intensity wavelengths are linearly dependent on the partial pressure of the compound being measured, but independent of the partial pressures of other gases which are present within the sample. The method and apparatus allow for efficient measurement of gaseous components.
Abstract:
The measuring apparatus of the present invention measures the optical properties of a sample containing a fluorescent material by irradiating the sample with light containing a UV component. In the present invention are provided a first light source for irradiating the sample with light containing a UV component, a second light source for irradiating the sample with light which does not contain a UV component, light receiving element for receiving light reflected from the sample irradiated by said light sources, and output means for generating weighting coefficients for weighting the output of the light receiving element during emission by each light source. The optical properties of the sample is calculated based on the output of the light receiving element for a first light source, output of the light receiving element for a second light source, and the respective weighting coefficients. Accordingly, measurement values can be obtained which are equal to values when measurement is accomplished with a standard light source.
Abstract:
A portable apparatus for continuous real-time measurement of airborne met, comprising an isokinetic sampler, a sample line, a sampling interface device, a pump, and an inductively coupled plasma atomic emission spectrometry (ICP-AES). A method for measurement of airborne metals by use of such an apparatus is also described, in which the sampling interface device accommodates the high, continuous sample collection flow-rates necessary for isokinetic sampling while at the same time permits sample air to be introduced into the plasma at preferred moderate flow-rates. A method for field standardization of the ICP-AES is also described whereby a relationship between aqueous solutions of metals and their aerosol counterparts is established, thus later allowing the field use of the aqueous metal solutions to simulate a particular range of airborne metal concentrations.
Abstract:
A compact atomic absorption analyzer includes a xenon flashlamp, processing circuits, optics, electronic heating apparatus and a photomultiplier. A sample to be tested is heated using electronic (radio frequency) heating apparatus within the optics to subject the sample to thermal energy sufficient to excite the element of the sample to a level at which it will radiate its characteristic line-emission spectra. A high intensity background light having an ultraviolet component is generated by the xenon flashlamp within the optics and this spectral distribution of this light is received by the photomultiplier. The output of the photomultiplier is processed by the processing electronics, with the results of the test displayed, stored and/or downloaded to an external computer or printer.
Abstract:
A spectrofluorometric apparatus for obtaining spectral image information comprises a stimulating ray source, which produces a laser beam serving as stimulating rays, and a scanning device, which deflects the laser beam in two directions and causes the deflected laser beam to scan a sample. An optical system separates the fluorescence, which has been produced by the sample when the sample is exposed to the laser beam, from the optical path of the laser beam. A Fourier spectrometric system causes interference to occur with the fluorescence, which has been separated by the optical system from the optical path of the laser beam. The Fourier spectrometric system detects the brightness and darkness of the fluorescence, which are due to the interference, as a detection signal and carries out Fourier transformation on the detection signal. The spectrum of the fluorescence is thus measured for each point on the sample, and two-dimensional spectral image information of the sample is thereby obtained.