Abstract:
An apparatus for measuring fluorescence of potable liquids contained within an optical quartz cell includes a deep UV laser or a compact UV LED that generates a light beam. A UV blocking and visible light transmitting optical filter reduces out-of-band emission from the LED. The optical quartz cell is between a pair of plane mirrors so that light from the light source travels through it several times. A concave mirror collects a fluorescence signal and has a common optical axis with a lens. The common optical axis is normal to an optical axis of the light beam. The concave mirror and lenses are positioned on opposite sides of the optical quartz cell. A fluorescence detector is in optical alignment with the concave mirror and the lens. A boxcar averager is in electrical communication with the fluorescence detector. Optical wavelength selection of the fluorescence emission uses optical filters or a spectrometer.
Abstract:
A color sensor array includes a plurality of sensors. Each of the plurality of sensors has a width dimension and a length dimension that is elongated with respect to the width dimension. The length dimensions of the sensors are substantially equal to one another and parallel to an illumination plane. Each of the plurality of sensors includes a face defined by opposing first and second elongated sides and opposing first and second non-elongated sides. The first non-elongated sides of the plurality of sensors are aligned with one another along an axis that is substantially perpendicular to the illumination plane.
Abstract:
When a system is powered on and becomes ready for a measurement, it automatically begins to acquire an interferogram (IFG). When a new IFG is acquired, if a background (BKG) IFG is present in a memory but there is no sample IFG (S2 and S4), the new IFG is compared with the BKG-IFG and, if the two IFGs are identical, the new IFG is added to the BKG-IFG (S5, S6 and S7). When an operator sets a sample in a sample chamber and the new IFG shows a change, the IFG is stored as a sample IFG (S8). Then, a sample measurement is initiated. After that, when a new IFG is found to be identical to the sample IFG stored in the memory (S9 and S10), the new IFG is added to the sample IFG (S13). The sample measurement is completed when the number of sample IFGs stored in the memory has reached a predetermined accumulation number. Thus, the sample measurement is automatically performed, for which the operator only needs to set a sample. The workload on the operator is reduced and the measurement task can be efficiently performed.
Abstract:
The apparatus and methods herein provide light sources and spectral measurement systems that can improve the quality of images and the ability of users to distinguish desired features when making spectroscopy measurements by providing methods and apparatus that can improve the dynamic range of data from spectral measurement systems.
Abstract:
There is provided a method for analyzing optical properties of an object, including utilizing a light illumination having a plurality of amplitudes, phases and polarizations of a plurality of wavelengths impinging from the object, obtaining modified illuminations corresponding to the light illumination, applying a modification to the light illumination thereby obtaining a modified light illumination, analyzing the modified light illumination, obtaining a plurality of amplitudes, phases and polarizations maps of the plurality of wavelengths, and employing the plurality of amplitudes, phases and polarizations maps for obtaining output representing the object's optical properties. An apparatus for analyzing optical properties of an object is also provided.
Abstract:
The present disclosure includes a number of method, medium, and apparatus claims utilized for color sensor performance. One method includes determining performance of a color sensor, which can be performed by measuring a color parameter intensity and reflectance spectral power distribution of a particular type of print medium with a color sensing utility of a print apparatus. The method also can include detecting a magnitude of a difference between the measured color parameter intensity and reflectance spectral power distribution of the particular type of print medium and a predetermined intensity and reflectance spectral power distribution of the color parameter of the particular type of print medium, where the predetermined intensity and reflectance spectral power distribution is stored in memory.
Abstract:
A reference-color measurement step of obtaining a reference-color measurement value by measuring a spectroscopic-radiation luminance of a light being emitted from a reference-color portion in a measurement direction, or a tristimulus value thereof, using a light-source-color measuring instrument, without irradiating the reference-color portion with a light source for measurement, in a predetermined measurement environment, is disclosed. An objective-portion measurement step of obtaining an objective-portion measurement value by measuring a spectroscopic-radiation luminance of a light being emitted from a measurement-objective portion in the measurement direction, or a tristimulus value thereof, using the light-source-color measuring instrument, without irradiating the measurement-objective portion with a light source for measurement, in the measurement environment, is also disclosed.
Abstract:
The present disclosure provides a method and system for focusing, which modulates a broadband light into a dispersive light having a higher dispersion characteristic and a lower dispersion characteristic, and the dispersion light is projected onto an object so as to form an object light. By means of the filtering and dividing procedure, a first optical spectrum of the dispersion light with respect to the higher dispersion characteristic is utilized to detect a height information of the surface profile of the object. Then, according to the height information, a second optical spectrum of the dispersion light with respect to the lower dispersion characteristic is adjusted to focus onto the object so that an imaging sensing device is capable of sensing the object light with respect to the lower dispersion characteristic, and thereby obtaining a clear and focusing image corresponding to the surface of the object.
Abstract:
Applications, systems and methods for identifying and monitoring critical colors in a print job and using an embedded color sensing device to measure critical color test patterns inserted in the print job are disclosed. The applications permits the user to interact with a print job and select of one or more critical colors from within the print job. In one embodiment, an application is configured to provide a graphical user interface (GUI) to facilitate the user in selecting critical colors. A printing system and method are disclosed for automatically monitoring critical colors in a print job and using an embedded color sensing device to measure critical color test patterns inserted in the print job. In one embodiment, printed critical color test patterns are separated from the printed customer documents and direct to a color sensing device for measurement.
Abstract:
In a spectrographic workpiece metrology system having an optical viewing window, the viewing window is calibrated against a reference sample of a known absolute reflectance spectrum to produce a normalized reflectance spectrum of the reference sample, which is combined with the absolute reflectance spectrum to produce a correction factor. Successive production workpieces are measured through the window and calibrated against the viewing window reflectance, and transformed to absolute reflectance spectra using the same correction factor without having to re-load the reference sample.