Abstract:
A light emitting diode (LED) is revealed. The LED includes a substrate, a first-type-doped layer, a light emitting layer, a second-type-doped layer, a plurality of first grooves, a second groove, an insulation layer, a first contact, and a second contact. The LED features that the second groove is connected to one end of each first groove and penetrates the second-type-doped layer and the light emitting layer to expose a part of the first-type-doped layer. The contact area between the first contact and the first-type-doped layer is increased. Therefore, the LED is worked at high current densities without heat accumulation. Moreover, the light emitting area is not reduced and the light emitting efficiency is not affected. The LED is flipped on a package substrate to form a flip-chip LED package.
Abstract:
A light emitting diode structure includes a substrate and a light emitting unit. The substrate has a protrusion portion and a light guiding portion. The protrusion portion and the light guiding portion have a seamless connection therebetween, and a horizontal projection area of the protrusion portion is smaller than that of the light guiding portion. The light emitting unit is disposed on the protrusion portion of the substrate. The light emitting unit is adapted to emit a light beam, and a portion of the light beam enters the light guiding portion from the protrusion portion and emits from an upper surface of the light guiding portion uncovered by the protrusion portion.
Abstract:
The present invention relates to a light emitting diode (LED) and a flip-chip packaged LED device. The present invention provides an LED device. The LED device is flipped on and connected electrically with a packaging substrate and thus forming the flip-chip packaged LED device. The LED device mainly has an Ohmic-contact layer and a planarized buffer layer between a second-type doping layer and a reflection layer. The Ohmic-contact layer improves the Ohmic-contact characteristics between the second-type doping layer and the reflection layer without affecting the light emitting efficiency of the LED device and the flip-chip packaged LED device. The planarized buffer layer id disposed between the Ohmic-contact layer and the reflection layer for smoothening the Ohmic-contact layer and hence enabling the reflection layer to adhere to the planarized buffer layer smoothly. Thereby, the reflection layer can have the effect of mirror reflection and the scattering phenomenon on the reflected light can be reduced as well.
Abstract:
A method of forming light emitting diode dies includes: forming an epitaxial layered structure that defines light emitting units on a front surface of a substrate wafer; forming a photoresist layer over a back surface of the substrate wafer; aligning the substrate wafer and patterning the photoresist layer so as to form openings in the photoresist layer, each of the openings having an area less than a projected area of the respective light emitting unit; forming a solder layer on the photoresist layer such that the solder layer fills the openings in the photoresist layer; removing the photoresist layer and a portion of the solder layer that covers the photoresist layer from the substrate wafer; and dicing the substrate wafer.
Abstract:
A light emitting chip includes a light emitting unit, a eutectic layer and a surface passivation layer. The eutectic layer has a first surface and a second surface opposite to each other. The light emitting chip connects to the first surface of the eutectic layer. The surface passivation layer covers the second surface of the eutectic layer. A material of the surface passivation layer includes at least a metal of an oxidation potential from −0.2 volts to −1.8 volts.
Abstract:
A light-emitting diode package structure includes a package carrier, a light guiding component and a light emitting unit. The light guiding component is disposed on the package carrier. The light emitting unit is disposed on an upper surface of light guiding component relatively distant from the package carrier. A horizontal projection area of the light guiding component is greater than that of the light emitting unit. The light emitting unit is adapted to emit a light beam, and a portion of the light beam enters the light guiding component and emits from the upper surface of the light guiding component. An included angle existing between the light beam and a normal direction of the upper surface ranges from 0 degree to 75 degrees.