Abstract:
An electrical interconnect including a first circuitry layer with a first surface and a second surface. At least a first dielectric layer is printed on the first surface of the first circuitry layer to include a plurality of first recesses. A conductive material is plated on surfaces of a plurality of the first recesses to form a plurality of first conductive structures electrically coupled to, and extending generally perpendicular to, the first circuitry layer. A filler material is deposited in the first conductive structures. At least a second dielectric layer is printed on the first dielectric layer to include a plurality of second recesses generally aligned with a plurality of the first conductive structures. A conductive material is plated on surfaces of a plurality of the second recesses to form a plurality of second conductive structures electrically coupled to, and extending parallel to the first conductive structures.
Abstract:
A compliant printed flexible circuit including a flexible polymeric film and at least one dielectric layer bonded to the polymeric film with recesses corresponding to a target circuit geometry. A conductive material is printed in at least a portion of the recesses to form a circuit geometry. At least one dielectric covering layer is printed over at least the circuit geometry. Openings can be printed in the dielectric covering layer to provide access to at least a portion of the circuit geometry.
Abstract:
A semiconductor socket including a substrate with a plurality of through holes extending from a first surface to a second surface. A plurality of discrete contact members are located in the plurality of the through holes. The plurality of contact members each include a proximal end accessible from the second surface, and a distal end extending above the first surface. At least one dielectric layer is bonded to the second surface of the substrate with recesses corresponding to target circuit geometry. A conductive material deposited in at least a portion of the recesses to form conductive traces redistributing terminal pitch of the proximal ends of the contact members.
Abstract:
A surface mount electrical interconnect adapted to provide an interface between contact pads on an LGA device and a PCB. The electrical interconnect includes a socket substrate having a first surface with a plurality of first openings having first cross-sections, a second surface with a plurality of second openings having second cross-sections, and center openings connecting the first and second openings. The center openings include at least one cross-section greater than the first and second cross-sections. A plurality of contact members are located in the socket substrate such that first contact tips are located proximate the first openings, second contact tips are located proximate the second openings, and center portions located in the center openings.
Abstract:
A surface mount electrical interconnect to provide an interface between a PCB and contacts on an integrated circuit device. The electrical interconnect includes a substrate with a plurality of recesses arranged along a first surface to correspond to the contacts on the integrated circuit device. Contact members are located in a plurality of the recess. The contact members include contact tips adapted to electrically couple with the contacts on the integrated circuit device. An electrical interface including at least one circuit trace electrically couples the contact member to metalized pads located along a second surface of the substrate at a location offset from a corresponding contact member. A solder ball is attached to a plurality of the metalized pads.
Abstract:
An electrical interconnect for providing a temporary interconnect between terminals on an IC device and contact pads on a printed circuit board (PCB). The electrical interconnect includes a substrate with a first surface having a plurality of openings arranged to correspond to the terminals on the IC device. A compliant material is located in the openings. A plurality of conductive traces extend along the first surface of the substrate and onto the compliant material. The compliant material provides a biasing force that resists flexure of the conductive traces into the openings. Conductive structures are electrically coupled to the conductive traces over the openings. The conductive structures are adapted to enhance electrical coupling with the terminals on the IC device. Vias electrically extending through the substrate couple the conductive traces to PCB terminals located proximate a second surface of the substrate.
Abstract:
A surface mount electrical interconnect adapted to provide an interface between solder balls on a BGA device and a PCB. The electrical interconnect includes a socket substrate with a first surface, a second surface, and a plurality of openings sized and configured to receive the solder balls on the BGA device. A plurality of electrically conductive contact tabs are bonded to the first surface of the socket substrate so that contact tips on the contact tabs extend into the openings. The contact tips electrically couple with the BGA device when the solder balls are positioned in the openings. Vias are located in the openings that electrically couple the contact tabs to contact pads located proximate the second surface of the socket substrate. Solder balls are bonded to the contact pad that are adapted to electrically and mechanically couple the electrical interconnect to the PCB.
Abstract:
A probe assembly that acts as a temporary interconnect between terminals on a circuit member and a test station. The probe assembly can include a base layer of a dielectric material printed onto a surface of a fixture. The surface of the fixture can have a plurality of cavities. A plurality of discrete contact members can be formed in the plurality of cavities in the fixture and coupled to the base layer. A plurality of conductive traces can be printed onto an exposed surface of the base layer and electrically coupled with proximal ends of one or more of the discrete contact members. A compliant layer can be deposited over the conductive traces and the proximal ends of the contact members. A protective layer can be deposited on the compliant layer such that when the probe assembly is removed from the fixture the distal ends of the contact members contact terminals on the circuit member and the conductive traces electrically couple the circuit member to a test station. Electrical devices on the probe assembly can communicate with the test station to provide adaptive testing.
Abstract:
An integrated circuit (IC) package for an IC device, and a method of making the same. The IC package includes an interconnect assembly with at least one printed compliant layer, a plurality of first contact members located along a first major surface, a plurality of second contact members located along a second major surface, and a plurality of printed conductive traces electrically coupling a plurality of the first and second contact members. The compliant layer is positioned to bias at least the first contact members against terminals on the IC device. Packaging substantially surrounds the IC device and the interconnect assembly. The second contact members are accessible from outside the packaging.
Abstract:
A method of making semiconductor die terminals and a semiconductor device with die terminals made according to the present method. At least a first mask layer is selectively printed on at least a portion of a wafer containing a plurality of the semiconductor devices to create first recesses aligned with electrical terminals on the semiconductor devices. A conductive material is deposited in a plurality of the first recesses to form die terminals on the semiconductor devices. The first mask layer is removed to expose the die terminals, and the wafer is diced into a plurality of discrete semiconductor devices.