Abstract:
Various embodiments of the present invention relate generally to systems for performing Raman spectroscopy. In one embodiment, a system for performing Raman spectroscopy comprises an analyte holder having a surface configured to retain an analyte and a light concentrator configured to receive an incident beam of light, split the incident beam into one or more beams, and direct the one or more beams to substantially intersect at the surface. The system may also include a collector configured to focus each of the one or more beams onto the surface, collect the Raman scattered light emitted from the analyte, and direct the Raman scattered light away from the surface.
Abstract:
A light fixture, using one or more solid state light emitting elements utilizes a diffusely reflect chamber to provide a virtual source of uniform output light, at an aperture or at a downstream optical processing element of the system. Systems disclosed herein also include a detector, which detects electromagnetic energy from the area intended to be illuminated by the system, of a wavelength absent from a spectrum of the combined light system output. A system controller is responsive to the signal from the detector. The controller typically may control one or more aspects of operation of the solid state light emitter(s), such as system ON-OFF state or system output intensity or color. Examples are also discussed that use the detection signal for other purposes, e.g. to capture data that may be carried on electromagnetic energy of the wavelength sensed by the detector.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like.
Abstract:
The color measurement instrument includes an illumination system and a sensing system. The illumination system is composed of a light emitting element and a light pipe. The light pipe has an incident surface at an illuminating end of the light emitting element and an ejected surface adjacent to a sensing platform of a sensing system. The sensing system includes a light collection device and a sensing platform for disposing a testing object. The light collection device includes an aperture stop for adjusting the shape of a light spot on a color sensor, a light collection lens set for detecting and projecting an image of a testing object on the sensing platform, a field stop for separating a light from an area, an uniform lens set for spreading the image on the field stop, and a color sensor for capturing and analyzing the color to adjust the brightness.
Abstract:
A shutter includes micro-optics having first and second concentrator arrays. A transducer laterally displaces one of the first and second concentrator arrays between transmissive and shuttered modes. In the transmissive mode, the arrays of concentrators are optically aligned to permit electromagnetic energy passing through the first array of concentrators to pass through the second array of concentrators. In the shuttered mode, the electromagnetic radiation is blocked from passing through the second array of concentrators. The concentrators may be compound parabolic concentrators, or lenslets positioned on opposing plates with pinholes printed therethrough. The shutter may increase f-number of radiation passing therethrough, and may be used in a limited f-cone radiation source with shuttering abilities, for example reducing f-cone of radiation output from the radiation source.
Abstract:
There is disclosed improved apparatus and methods for detection of shape, size and intrinsic fluorescence properties of a fluid borne particle wherein the apparatus comprises a laser, two light sources, two detectors, and optionally a third detector. The apparatus is particularly suitable for detection of airbone biological particles.
Abstract:
The present subject matter relates to methods of high-speed analysis of product samples. Light is directed to a portion of a product under analysis and reflected from or transmitted through the product toward a plurality of optical detectors. Signals from the detectors are compared with a reference signal based on a portion of the illuminating light passing through a reference element to determine characteristics of the product under analysis. The products under analysis may be stationary, moved by an inspection point by conveyor or other means, or may be contained within a container, the container including a window portion through which the product illuminating light may pass.
Abstract:
A shutter includes micro-optics having first and second concentrator arrays. A transducer laterally displaces one of the first and second concentrator arrays between transmissive and shuttered modes. In the transmissive mode, the arrays of concentrators are optically aligned to permit electromagnetic energy passing through the first array of concentrators to pass through the second array of concentrators. In the shuttered mode, the electromagnetic radiation is blocked from passing through the second array of concentrators. The concentrators may be compound parabolic concentrators, or lenslets positioned on opposing plates with pinholes printed therethrough. The shutter may increase f-number of radiation passing therethrough, and may be used in a limited f-cone radiation source with shuttering abilities, for example reducing f-cone of radiation output from the radiation source.
Abstract:
A method for providing data useful in procedures associated with the oral cavity, in which at least one numerical entity representative of the three-dimensional surface geometry and color of at least part of the intra-oral cavity is provided and then manipulated to provide desired data therefrom.