Abstract:
Current apparatuses and methods for analysis of spectroscopic optical coherence tomography (SOCT) signals suffer from an inherent tradeoff between time (depth) and frequency (wavelength) resolution. In one non-limiting embodiment, multiple or dual window (DW) apparatuses and methods for reconstructing time-frequency distributions (TFDs) that applies two windows that independently determine the optical and temporal resolution is provided. For example, optical resolution is provided. For example, optical resolution may relate to scattering information about a sample, and temporal resolution may be related to absorption or depth related information. The effectiveness of the apparatuses and methods is demonstrated in simulations and in processing of measured OCT signals that contain fields which vary in time and frequency. The DW technique may yield TFDs that maintain high spectral and temporal resolution and are free from the artifacts and limitations commonly observed with other processing methods.
Abstract:
In one embodiment, a heterodyne detection system for detecting light includes a first input aperture configured to receive first light from a scene input, a second input aperture configured to receive second light from a local oscillator input, a broadband local oscillator configured to provide the second light to the second input aperture, a dispersive element configured to disperse the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is configured to concentrate incident light from a primary condensing lens onto the infrared detector, and the infrared detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are described according to other embodiments.
Abstract:
Provided is an optical apparatus characterized in that alight from a light source is split to a first light and a second light, and the first light is focused onto an observation object, that an optical filter having a light shielding region for high resolution is disposed in at least one optical path selected from optical paths of the first light, second light and response light from the observation object, that an interference light formed by causing interference between the response light and the reference light in polarized states different from each other is split to multiple beams, and desired amplitude information signals are obtained from the multiple beams through a phase plate and a polarization plate to increase intensity of the second light, whereby the signal to noise ratio is improved.
Abstract:
Examples herein include apparatus and techniques that can be used to perform rotational spectroscopy on gas-phase samples. Such techniques can include using a spectrometer providing frequency synthesis and pulse modulation to provide excitation (e.g., pump or probe pulses) of a gas-phase sample at mm-wave frequencies. Synthesis of such mm-wave frequencies can include use of a frequency multiplier, such as an active multiplier chain (AMC). A free induction decay (FID) elicited by the excitation or other time-domain information can be obtained from the sample, such as down-converted and digitized. A frequency domain representation of the digitized information, such as a Fourier transformed representation, can be used to provide a rotational spectrum.
Abstract:
An apparatus and method for measuring the attenuation and dispersion introduced by a sample into an optical signal are disclosed. The apparatus includes a chirped light source, a beam splitter and an optical detector. The beam splitter splits the optical signal generated by the light source into a reference optical signal and a sample optical signal. The sample and reference optical signals are mixed on the detector after the sample optical signal has traversed an experimental sample thus generating a signal having an AC component related to an attenuation and a dispersion introduced by the experimental sample. The optical paths traversed by the reference and sample optical signals between the beam splitter and the detector are chosen such that the reference optical signal and the sample optical signal overlap in time but do not arrive at the optical detector at the same time.
Abstract:
Highly advantageous transceiver systems with common mode phase drift rejection and associated methods are disclosed which utilize certain phase modulators in configurations that reduce or eliminate inconsistent interference patterns caused by phase modulator phase drift.
Abstract:
A hand-held instrument includes a sample probe for evaluating at least one constituent of a sample; a processor configured with machine executable code stored on machine readable media for controlling the instrument; a display for providing output of the instrument; and, a pointing device for selecting output of the display and providing input to the processor, the pointing device configured for facilitating the selecting while holding the instrument. A method of use, a computer program product and embodiments of sample analyzers are disclosed.
Abstract:
A signal is amplified by making a CARS beam from an observed body and a reference beam which is a portion of a super continuum beam and has a frequency of ωAS=2ωP−ωST interfere with each other and taking out the signal from an interference beam of the CARS beam and the reference beam.
Abstract:
The invention features a method including: (i) providing spectrally resolved information about light coming from different spatial locations in a sample comprising deep tissue in response to an illumination of the sample, wherein the light includes contributions from different components in the sample; (ii) decomposing the spectrally resolved information for each of at least some of the different spatial locations into contributions from spectral estimates associated with at least some of the components in the sample; and (iii) constructing a deep tissue image of the sample based on the decomposition to preferentially show a selected one of the components.
Abstract:
Provided is an optical pulse-generator and an optical pulse-generating method which are capable of generating an optical pulse train with an arbitrary pattern. An optical pulse-generator 1 includes a first optical modulator 21 configured to modulate input light using a first modulation signal SIG1 to generate optical pulses, a second optical modulator 41 configured to perform a modulation operation using a second modulation signal SIG2 synchronizing with the first modulation signal SIG1 and having a signal pattern that is set to output only specific part of the optical pulses, and a dispersion compensator 30 configured to compensate a chirp of the optical pulse output from the first optical modulator 21.