Abstract:
A female connector which is useful for space saving and height reduction of a connector connection portion is a female connector including: an insulating film having flexibility; a plurality of pad portions formed at predetermined positions on one face of the insulating film in an arranged manner; female terminal portions composed of openings formed at one lateral portions within faces of the pad portions so as to extend up to the other face of the insulating film; and spacer bumps formed at positions corresponding to the other lateral positions within the faces of the pad portions in a standing manner within the other face of the insulating film, proximal portions of the spacer bumps being electrically connected to the pad portions.
Abstract:
The invention provides a new method and chip scale package is provided. The inventions starts with a substrate over which a contact point is provided, the contact point is exposed through an opening created in the layer of passivation and a layer of polymer or elastomer. A barrier/seed layer is deposited, a first photoresist mask is created exposing the barrier/seed layer where this layer overlies the contact pad and, contiguous therewith, over a surface area that is adjacent to the contact pad and emanating in one direction from the contact pad. The exposed surface of the barrier/seed layer is electroplated for the creation of interconnect traces. The first photoresist mask is removed from the surface of the barrier/seed layer. A second photoresist mask, defining the solder bump, is created exposing the surface area of the barrier/seed layer that is adjacent to the contact pad and emanating in one direction from the contact pad. The solder bump is created in accordance with the second photoresist mask, the second photoresist mask is removed from the surface of the barrier/seed layer, exposing the electroplating and the barrier/seed layer with the metal plating overlying the barrier/seed layer. The exposed barrier/seed layer is etched in accordance with the pattern formed by the electroplating, reflow of the solder bump is optionally performed.
Abstract:
A sub-mount adapted for AC and DC operation of devices mountable thereon, the sub-mount including a base substrate including a first surface and a second surface different from the first surface, a conductive pattern on the first surface, a first pair and a second pair of first and second electrodes on the second surface, and vias extending through the base substrate between the first and second surfaces, wherein the conductive pattern includes a first set of mounting portions and two via portions along a first electrical path between the first pair of first and second electrodes, and a second set of mounting portions and two via portions along a second electrical path between the second pair of first and second electrodes, the via portions connecting respective portions of the conductive pattern to respective electrodes of the first and second pair of first and second electrodes through the vias.
Abstract:
Provided is a wafer level package including a first substrate that has circuit patterns provided on the top surface thereof and first vias formed therein, the first vias being electrically connected to the circuit patterns; and a second substrate that is bonded to the bottom surface of the first substrate through anodic bonding and has second vias formed therein.
Abstract:
The invention provides thermally conductive material so that less heat traveling from one side of a layer will reach connection material on another side of a layer. Rather, some of the heat will be conducted away by the thermally conductive material and dissipated.
Abstract:
According to one embodiment, a printed wiring board structure includes first and second semiconductor packages each including a substrate, and a printed wiring board including first and second component mounting surfaces having a relationship given as front and back surfaces and an inter-chip connection part provided at one portion thereof, the inter-chip connection part being provided with a plurality of arrayed through conductors penetrating through the first and second component mounting surfaces, wherein the substrates of the first and second semiconductor packages are arranged on the printed wiring board in a positional relationship such that the substrates mounted on the component mounting surfaces are partially overlapped via the printed wiring board, the external connection electrodes provided on the substrates are arrayed on the overlapped portion and are conductively connected to the through conductors arrayed in the inter-chip connection part.
Abstract:
The invention provides a new method and chip scale package is provided. The inventions starts with a substrate over which a contact point is provided, the contact point is exposed through an opening created in the layer of passivation and a layer of polymer or elastomer. A barrier/seed layer is deposited, a first photoresist mask is created exposing the barrier/seed layer where this layer overlies the contact pad and, contiguous therewith, over a surface area that is adjacent to the contact pad and emanating in one direction from the contact pad. The exposed surface of the barrier/seed layer is electroplated for the creation of interconnect traces. The first photoresist mask is removed from the surface of the barrier/seed layer. A second photoresist mask, defining the solder bump, is created exposing the surface area of the barrier/seed layer that is adjacent to the contact pad and emanating in one direction from the contact pad. The solder bump is created in accordance with the second photoresist mask, the second photoresist mask is removed from the surface of the barrier/seed layer, exposing the electroplating and the barrier/seed layer with the metal plating overlying the barrier/seed layer. The exposed barrier/seed layer is etched in accordance with the pattern formed by the electroplating, reflow of the solder bump is optionally performed.
Abstract:
A printed circuit board and a method for imbedding a battery in the printed circuit board are disclosed. The method includes connecting the battery to a first inner pad and a second inner pad on an inner core layer and forming a first battery contact between a first outer pad and the first inner pad. The method also includes electrically isolating the first battery contact and forming a second battery contact between a second outer pad and the second inner pad.
Abstract:
The present invention provides a number of techniques for laminating and interconnecting multiple substrates to form a multilayer package or other circuit component. A solder bump may be formed on the conductive pad of at least one of two or more substrates. The solder bump preferably is formed from an application of solder paste to the conductive pad(s). Adhesive films may be positioned between the surfaces of the substrates having the conductive pads, where the adhesive films include apertures located substantially over the conductive pads such that the conductive pads and/or solder bumps confront each other through the aperture. The two or more substrates then may be pressed together to mechanically bond the two or more substrates via the adhesive films. The solder bump(s) may be reflowed during or after the lamination to create a solder segment that provides an electrical connection between the conductive pads through the aperture in the adhesive films.
Abstract:
A package substrate including a circuit board, a reinforcing plate and at least one conductive channel is provided. A first surface of the reinforcing plate is disposed on the circuit board for resisting the warpage of the circuit board. The reinforcing plate has an opening corresponding to a first contact of the circuit board exposed thereon. In addition, one end of the conductive channel is located in the opening and electrically connected to the first contact, and the other end of the conductive channel is located on a second surface of the reinforcing plate to form a bonding pad.