Abstract:
Urea (multi)-(meth)acrylate (multi)-silane precursor compounds, synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds, either neat or in a solvent, and optionally with a catalyst, such as a tin compound, to accelerate the reaction. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-(meth)acrylate (multi)-silane precursor compound synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making the urea (multi)-(meth)acrylate (multi)-silanes and their use in composite films and electronic devices are described.
Abstract:
A barrier film having a substrate, a base polymer layer applied to the substrate, an oxide layer applied to the base polymer layer, and a top coat polymer layer applied to the oxide layer. An optional inorganic layer can be applied over the top coat polymer layer. The top coat polymer includes a silane and an acrylate co-deposited to form the top coat layer. The use of a silane co-deposited with an acrylate to form the top coat layer of the barrier films provide for enhanced resistance to moisture and improved peel strength adhesion of the top coat layer to the underlying barrier stack layers.
Abstract:
Urea (multi)-(meth)acrylate (multi)-silane precursor compounds, synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds, either neat or in a solvent, and optionally with a catalyst, such as a tin compound, to accelerate the reaction. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-(meth)acrylate (multi)-silane precursor compound synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making the urea (multi)-(meth)acrylate (multi)-silanes and their use in composite films and electronic devices are described.
Abstract:
Compositions of matter described as urea (multi)-urethane (meth)acrylate-silanes having the general formula RA—NH—C(O)—N(R4)—R11—[O—C(O)NH—RS]n, or RS—NH—C(O)—N(R4)—R11—[O—C(O)NH—RA]n. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-urethane (meth)acrylate-silane precursor compound. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making such urea (multi)-urethane (meth)acrylate-silane precursor compounds, and their use in composite films and electronic devices are also described. Methods of using multilayer composite films as barrier films in articles selected from solid state lighting devices, display devices, and photovoltaic devices are also described.
Abstract:
Compounds having hindered amine and oxyalkyl amine light stabilizers can mitigate the adverse effects of actinic radiation, such as visible and ultraviolet light, on polymers and copolymers. Polymers and copolymers derived from such compounds. Articles, such as coated articles and molded articles, containing such polymers or compounds.
Abstract:
Touch sensor layer constructions and methods of making such constructions are described. More particularly, touch sensor constructions that utilize patterned conductive layers that may be applied by a sacrificial release liner, eliminating one or more glass and/or film substrate from touch sensor stacks, and methods of making such constructions are described.
Abstract:
Touch sensor layer constructions and methods of making such constructions are described. More particularly, touch sensor constructions that utilize patterned conductive layers that may be applied by a sacrificial release liner, eliminating one or more glass and/or film substrate from touch sensor stacks, and methods of making such constructions are described.
Abstract:
Urea (multi)-(meth)acrylate (multi)-silane precursor compounds, synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds, either neat or in a solvent, and optionally with a catalyst, such as a tin compound, to accelerate the reaction. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi) (meth)acrylate (multi)-silane precursor compound synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making the urea (multi)-(meth)acrylate (multi)-silanes and their use in composite films and electronic devices are described.
Abstract:
Compositions of matter described as urea (multi)-urethane (meth)acrylate-silanes having the general formula RA—NH—C(O)—N(R4)—R11—[O—C(O)NH—RS]n, or RS—NH—C(O)—N(R4)—R11—[O—C(O)NH—RA]n. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi) urethane(meth)acrylate-silane precursor compound. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making such urea (multi)-urethane(meth)acrylate-silane precursor compounds, and their use in composite films and electronic devices are also described. Methods of using multilayer composite films as barrier films in articles selected from solid state lighting devices, display devices, and photovoltaic devices are also described.
Abstract:
An optical system includes a lens layer having a first major surface including first and second microlenses and a first light absorbing layer. The light absorbing layer defines first and second through openings with a one-to-one correspondence between the first and second microlenses and respective first and second through openings. Each pair of first microlens and first through opening centered on a first optical axis makes a first angle with a normal to the first light absorbing layer. Each pair of second microlens and second through opening centered on a second optical axis makes a second angle, different than the first angle, with the normal to the first light absorbing layer. A light source emits light incident on the first major surface side. The emitted light includes first and second light beams carrying respective first and second information and propagating substantially parallel to the first and second optical axes, respectively.