Abstract:
The invention relates to a method for coating a substrate, comprising the steps of: a) Applying a layer comprising a melamine-formaldehyde resin A to a substrate, whereby a coated substrate is formed; b) Optionally treating the coated substrate with IR- or NIR-radiation; c) Optionally applying an ink, dye solution or pigment dispersion to the coated substrate; d) Optionally applying a layer comprising a melamine-formaldehyde resin B to the coated substrate from step b) or c); e) Placing the coated substrate in a press; f) Optionally heating the coated substrate in the press for a certain amount of time; g) Increasing the pressure in the press and keeping the coated substrate under pressure for a certain amount of time. The invention further relates to a coated substrate as obtainable by the said method, and its use in a post-forming process.
Abstract:
Articles are coated by applying a coating composition of a high Tg phenoxy-type material having a Tg of at least about 75° C. to at least a portion of a surface of an article, and forming a dried/cured coating of the high Tg phenoxy-type material on the article surface, where the coating has the high Tg phenoxy-type material and a PHAE; or the article surface comprises a coating includes a PHAE; or the coating has the high Tg phenoxy-type material and a PHAE, and the article surface includes a coating layer of a PHAE.
Abstract:
Apparatus and methods for coating elongated medical devices, such as guidewires and catheters, incorporating infrared (IR) heating tools for curing the coating while the medical devices are still in place on the coating apparatus. Coating and curing may be accomplished evenly in a dipping machine by utilizing IR heaters having heating heads with openings, the heating heads being mounted for the extension of such elongated medical devices through their openings so that the heating heads are in generally surrounding juxtaposition to the elongated medical devices. The voltage supply to the IR heaters may be selectively adjusted so as to match the wavelength of the generated IR heat to the energy absorbing capability of the particular coating solution being utilized for proper timed absorption of the infrared energy.
Abstract:
A plasma is produced in a treatment space by diffusing a plasma gas at atmospheric pressure and subjecting it to an electric field created by two metallic electrodes separated by a dielectric material, a precursor material is mixed with the plasma, and a substrate film or web is coated by vapor deposition of the vaporized substance at atmospheric pressure in the plasma field. The deposited precursor is cured by electron-beam, infrared-light, visible-light, or ultraviolet-light radiation, as most appropriate for the particular material being-deposited. Plasma pre-treatment and post-treatment steps are used to enhance the properties of the resulting coated products. Similar results are obtained by atomizing and spraying the liquid precursor in the plasma field.
Abstract:
A method of curing a heat curable coating on a heat sensitive substrate includes initially heating the coated substrate by exposure to infrared radiation in order to increase the temperature at a point near to the coating with time, and subsequently heating the coated substrate by contact with a warm fluid in order to increase the temperature at a point near to the coating with time. After subsequently heating the coated substrate, the coating can be substantially cured, the coating can have good optical quality, and the heat sensitive substrate can be not substantially deformed.
Abstract:
The method for hardening electro-insulating materials is characterised by the utilization and/or co-utilization of near-infrared radiation (NIR) having a wavelength of 500 nm to 1400 nm. NIR also enables very fast hardening of the component surface even with pure thermally hardenable impregnating material and further provides good hardening of thick layers located deep inside said layers. Combined hardening, for example, NIR and UV light, is also possible.
Abstract:
Coated articles are formed by applying a first aqueous solution or dispersion of a thermoplastic resin on a surface of an article and at least one IR curing catalyst to form a film, where at least a portion of the first aqueous solution or dispersion is a thermoplastic epoxy resin. The film is exposed to IR radiation in an amount sufficient to at least partially cure the film, and a substantially cured and/or dried thermoplastic epoxy coating is formed.
Abstract:
A method of manufacturing an optical data storage medium, comprising at least one substrate (11) and a plurality of layers deposited on the substrate (11) is described. The medium includes at least one of a transparent spacer layer and transparent cover layer (12). The layer (12) is provided by applying a liquid onto the rotating substrate (11) and rotating the substrate (11) further in order to spread out the liquid into a layer substantially uniformly between an inner radius ri and an outer radius ro, and solidifying the liquid layer (12) by means of exposure to UV radiation. After applying the liquid onto the rotating substrate the liquid layer (12) is heated by heating means (14) in such a way that the temperature rise of the liquid layer (12) at ri has a value dTri, while the temperature rise of the liquid layer (12) between ri and ro gradually increases, and the temperature rise of the liquid layer (12) at ro has a value dTro>dTri. In this way the spacer layer or cover layer has a variation in thickness smaller than +/−1 μm, measured over the information storage area. Further a medium manufactured using said method and an apparatus for performing the method are described.
Abstract:
The present invention is directed to a process for coating a surface of a substrate with a powder coating composition and forming a smooth film thereon; wherein the process comprises: applying a powder coating composition to a surface of a substrate; melting and curing the powder coating composition, wherein pulsed NIR radiation is used to perform said melting and curing of the powder coating composition, the NIR radiation being provided by an NIR radiation emitter and the pulsed NIR radiation comprising the steps of: a) applying heat by NIR radiation at 20-50% NIR radiation emitter power to the surface of the substrate coated with the powder coating composition for a sufficient time to at least partially adhere the powder coating to the surface of the substrate; and then b) removing the heat for a period of time to allow the powder coating to at least partially coalesce and adhere to the surface of the substrate; and then c) applying said heat by NIR radiation at 80-100% NIR radiation emitter power to the surface of the substrate to form a smooth cured film thereon.
Abstract:
Articles are coated by applying a coating composition of a high Tg phenoxy-type material having a Tg of at least about 75° C. to at least a portion of a surface of an article, and forming a dried/cured coating of the high Tg phenoxy-type material on the article surface, where the coating has the high Tg phenoxy-type material and a PHAE; or the article surface comprises a coating includes a PHAE; or the coating has the high Tg phenoxy-type material and a PHAE, and the article surface includes a coating layer of a PHAE.