Abstract:
Disclosed is a vehicle control apparatus which can execute a start-up control for improving acceleration performance at the time of starting an internal combustion engine during the running of a hybrid vehicle. When a hybrid ECU determines that a predetermined time has not yet elapsed after termination of the start-up control of the engine, and that the hybrid vehicle is in a high speed, high load condition, but not in a warming-up state, the hybrid ECU sets a value Nupest2 larger than a value Nupest1, that is usually set as a maximum value Krmx of a rise rate of an engine rotational speed.
Abstract:
In a variable valve mechanism of an internal combustion engine, when a slider is displaced relative to an input member and an output member in an axial direction, the output member turns relative to the input member in a swing direction, whereby a lift of a valve is increased or reduced. The variable valve mechanism is brought into a lift retaining state when the slider is placed in an idle running range located on a reducing direction side with respect to a boundary position. The lift retaining state is a state where when the slider is displaced in the axial direction, the input member and the output member are displaced together with the slider in the axial direction, so that the relative displacement of the slider and the relative turning of the output member do not occur and the lift of the valve is retained.
Abstract:
A valve train for a reciprocating piston internal combustion engine with a transmission element in the form of a rocker arm (1) or pivot arm that can be actuated, on one hand, at least indirectly by a cam of a camshaft and is in active connection, on the other hand, through an intermediate connection of a valve bridge (4), with gas-exchange valves (7, 8). The valve bridge (4) has hydraulic valve lash compensation elements (“HVAs”) allocated to each gas-exchange valve (7, 8).
Abstract:
A valve actuation system is disclosed for an engine. The system may have at least one gas exchange valve, a rocker shaft, a camshaft, a rocker arm connected to the rocker shaft and operatively engaged with the camshaft, a valve bridge engaged with the at least one gas exchanger valve, a lash adjuster disposed in the valve bridge, and a button configured to slide on the valve bridge. The system may further include a pin fluidly connecting the rocker arm to the button and having an elongated cylindrical shaft with a first open end inside the rocker arm and a second end inside the button. The pin may also have a head connected to and a reservoir formed in the elongated cylindrical shaft. The pin may further have passages extending from the bore of the rocker arm to the reservoir, and s passage extending from the reservoir through the head.
Abstract:
An adjustable valve device includes: a first cam portion penetrated by a camshaft, rotating with the camshaft, and including an elongated hole formed therein; a U or L shaped second cam portion supported by the first cam portion so as to swing to move between a first state and a second state; a stopper pin fixed to the second cam portion and penetrating through the elongated hole; a biasing member biasing the stopper pin so that the second cam portion becomes in the first state; a lock mechanism locking the second cam portion only when the second cam portion is in the first state; and a cam follower exerting a reactive force so that the second cam portion becomes in the second state in a state where a lock of the second cam portion is released, wherein the reactive force is greater than a biasing force of the biasing member.
Abstract:
A variable valve lift apparatus of an engine includes a first body rotated at within a preset angle range by rotating a high-speed cam coupled to a camshaft, a second body coupled to the first body or decoupled from the first body and rotated within a preset angle range by rotating a low-cam coupled to the camshaft when the second body is decoupled from the first body, a latching pin provided retractably forward of the first body such that the first body is coupled to or decoupled from the second body, and an actuating unit to retractably actuate the latching pin. The degree of the lift of the valve is variably controlled in two stages of high-speed and low-speed modes through the rotary motion of the high speed cam or low speed cam by coupling or decoupling the first and second bodies to or from each other.
Abstract:
A control device of an internal combustion engine includes: a variable valve device including: first and second rocker arms; a cam; a rocker shaft provided with a lubricating oil passage; a pin switching the first and second rocker arms between a coupling state and a non-coupling state; a biasing member biasing the pin; a switching oil passage capable of supplying oil pressure to the pin in a direction opposite to a biasing direction; a lash adjuster; and a supplying oil passage, capable of supplying oil pressure to the pin in the biasing direction of the biasing member and supplying oil pressure into the lash adjuster, a hydraulic pump; an oil pressure control valve; and a control unit controlling the oil pressure control valve to always supply the supplying oil passage with oil pressure higher than oil pressure within the lubricating oil passage, during driving of an internal combustion engine.
Abstract:
A valve mechanism includes: a support shaft immovably fixed to a main body of an internal combustion engine, a main arm swingably supported by the support shaft; two sub-arms arranged at both sides of the main arm; a coupling support portion swingably supporting and coupling the two sub-arms to the main arm; a cam; and a roller rotatably located in the main arm. Each of the two sub-arms includes: a drive unit pressing and driving a valve; and a contact portion contacting a plunger of a lash adjuster, the contact portion has a curved surface slidably contacting a flat surface formed in a tip portion of the plunger and having an arc-like curved surface shape of which a central axis line corresponds to a central swing axis line of the main arm in a state where the cam abuts on the roller in a base circular portion of the cam.
Abstract:
An engine valve actuation mechanism for producing a variable engine valve event includes a cam, a rocker arm, a rocker arm shaft, an eccentric rocker arm bushing, and a bushing actuation device. The eccentric rocker arm bushing is disposed in an axial hole in the rocker arm, the rocker arm shaft being disposed in the eccentric rocker arm bushing with the rocker arm shaft and the eccentric rocker arm bushing having offset axial centerlines. One end of the rocker arm and the cam is connected to form a kinematic pair and the other end of the rocker arm is located above the engine valve with a gap between the cam and the engine valve. The bushing actuation device is placed in the rocker arm and drives the eccentric rocker arm bushing to rotate, and the rotation of the eccentric rocker arm bushing changes the gap to generate the variable engine valve event.
Abstract:
A four-stroke internal combustion engine having an engine brake, at least one exhaust valve per cylinder, each valve actuated by a camshaft and at least one first valve lever arrangement, and a device which advances the exhaust control, with the valve lever arrangement having an exhaust lever actuated by an exhaust cam and a brake lever actuated by a brake cam. The brake lever has a first brake lever part on the side of the camshaft and a second brake lever part on the side of the exhaust valve, with the two brake lever parts being rotatably mounted independent of each other about a lever axis and being rotationally connectable with each other in engine braking operation by a locking element which is adjustable between two positions.