Abstract:
An optical sensing module suitable for a gas phase sample, the optical sensing module comprising: a silicon or silicon nitride transmitter photonic integrated circuit (PIC), the transmitter PIC comprising: one or more lasers, each laser of the one or more lasers operating at a wavelength that is different from the wavelength of the others; one or more optical outputs for light originating from the one or more lasers, the optical output arranged such that the light interacts with the gas-phase sample; and one or more photodetectors configured to detect light after interaction with the gas-phase sample.
Abstract:
The invention comprises a method and apparatus for sampling skin of a person as a part of noninvasive analyte property determination system, comprising the steps of: providing an analyzer, comprising: sources and at least three detectors at least partially embedded in a probe housing, the probe housing comprising a sample side surface, the detectors including: a range of differing radial distances from a first illumination zone; repetitively illuminating an illumination zone of the skin with photons in a range of 1200 to 2500 nm; detecting portions of the first photons with the at least three detectors; and using signals from the at least three detectors and a metric, respectively classifying the skin into a first, second, and third tissue state, the radial distances of the at least three detectors differing from each other by greater than ten percent.
Abstract:
In a Raman microscope, a depth measurement processor performs depth measurement by changing a focal position of laser light along a depth direction of a sample which is an irradiation direction of the laser light with respect to the sample, and meanwhile, acquiring a Raman spectrum of the sample at a plurality of points in the depth direction. A display processor displays an input screen used to input a parameter at a time of performing the depth measurement on the sample in association with a surface image of the sample on a stage. The parameter includes a range in which the focal position of the laser light is changed along the depth direction and an interval between the plurality of points within the range.
Abstract:
An analysis system 10 includes a plurality of spectrophotometers 1, a memory storage 11, and a control terminal 12. The spectrophotometer 1 further includes a light source 2, a light detector, and an optical element that introduces light from the light source 2 to the light detector. The memory device 11 stores the information as the control information 110 relative to the light amount of the light detected by the light detector 6 right after replacement when replacing the light source of the spectrophotometer 1. A replacement timing determination unit 125 of the control terminal 12 reads out a control information 110 in the memory device 11 and determines the replacement timing of the optical element based on the value of the light amount information of the read-out control information 110.
Abstract:
Systems and techniques for optical spectrometer detection using, for example, IR spectroscopy components and Raman spectroscopy components are described. For instance, a system includes a first electromagnetic radiation source configured to illuminate a sample with a first portion of electromagnetic radiation in a first region of the electromagnetic spectrum (e.g., an IR source) and a second electromagnetic radiation source configured to illuminate a sample with a second portion of electromagnetic radiation in a second substantially monochromatic region of the electromagnetic spectrum (e.g., a laser source). The system also includes a detector module configured to detect a sample constituent of a sample by analyzing a characteristic of electromagnetic radiation reflected from the sample associated with the first electromagnetic radiation source and a characteristic of electromagnetic radiation reflected from the sample associated with the second electromagnetic radiation source.
Abstract:
Provided are methods and systems for concurrent imaging at multiple wavelengths. In one aspect, a hyperspectral/multispectral imaging device includes a lens configured to receive light backscattered by an object, a plurality of photo-sensors, a plurality of bandpass filters covering respective photo-sensors, where each bandpass filter is configured to allow a different respective spectral band to pass through the filter, and a plurality of beam splitters in optical communication with the lens and the photo-sensors, where each beam splitter splits the light received by the lens into a plurality of optical paths, each path configured to direct light to a corresponding photo-sensor through the bandpass filter corresponding to the respective photo-sensor.
Abstract:
Multispectral imaging of samples, in particular of biological tissues. A method for acquisition of fluorescence and reflectance images of an object including alternatingly illuminating the object with at least a first light having several spectral regions of high intensity, wherein the first light has at least one region of low intensity that is of longer wavelength to a region of high intensity, and at least a second light having at least one spectral region of high intensity, recording a first image of the object during illumination of the object with the first light and a second image of the object during illumination of the object with the second light using a common sensor array, wherein the light recorded by the sensor array is attenuated in at least one of the spectral regions in which the first light has high intensities.
Abstract:
Provided are methods and systems for concurrent imaging at multiple wavelengths. In one aspect, a hyperspectral/multispectral imaging device includes a lens configured to receive light backscattered by an object, a plurality of photo-sensors, a plurality of bandpass filters covering respective photo-sensors, where each bandpass filter is configured to allow a different respective spectral band to pass through the filter, and a plurality of beam splitters in optical communication with the lens and the photo-sensors, where each beam splitter splits the light received by the lens into a plurality of optical paths, each path configured to direct light to a corresponding photo-sensor through the bandpass filter corresponding to the respective photo-sensor.
Abstract:
A broadband light source (e.g., an optical supercontinuum apparatus), can comprise a pump laser; a non-linear optical element configured for generating spectrally broadened light generated responsive to receiving pump laser pulses and one or more non-linear processes; an optical output for delivering spectrally broadened light to a target; a length of optical waveguide optically upstream of the output and in optical communication therewith; and a sensor apparatus. The length of optical waveguide can comprise at least a first waveguiding region configured for propagating spectrally broadened light in a forward direction toward the output and can be further configured for receiving backward propagating light responsive to the forward propagating light. The sensor apparatus can be configured for optical communication with the length of optical waveguide so as to sense the backward propagating light propagated by the length of optical waveguide. Methods for operating and using such broadband light source are disclosed, as are applications of the methods and apparatus.
Abstract:
The invention comprises a method and apparatus for sampling a common tissue volume and/or a common skin layer skin of a person as a part of noninvasively determining an analyte property with an analyzer including: a set of detectors at least partially embedded in a probe housing, the probe housing comprising a sample side surface, the detectors including a first and second range of detection zones of differing radial distances from a first illumination zone and second illumination zone, respectively coupled to separate sources, with surface paths between the sources and detectors overlapping a common skin area during use.