Abstract:
An apparatus for optically analyzing a sample may include an imaging subsystem that images the sample, one or more analyzing subsystems that analyze the sample, a temperature control subsystem that controls a temperature of the atmosphere within the apparatus, a gas control subsystem that controls a composition of the atmosphere within the apparatus, and a control module that controls the various subsystems of the apparatus.
Abstract:
A laser-based spectroscopy system that combines a distance/proximity standoff sensor, a high-repetition rate laser spectroscopy system, and software with a decision-making algorithm embedded in a processing unit which in combination performs selective firing of the laser when the target object is within an interrogation zone. In a related embodiment, the system provides selective sorting of spectroscopic signals based on information from the standoff signal and from information contained in the spectral signals themselves. The laser emission can be actively controlled while keeping the laser firing, thereby preserving the thermal stability and hence the power of the laser; and the standoff sensor information and the spectral information can be combined to determine the proper relative weighting or importance of each piece of spectral information.
Abstract:
A detector apparatus is provided and includes a collector having access to a sample of a gaseous fluid and a tester coupled to and disposed remotely from the collector. The tester includes a test chamber into which a sample is directed from the collector, an excitation element to excite the sample in the test chamber and a spectrum analyzing device coupled to the test chamber to analyze the excited sample for evidence of a concentration of particles of interest in the gaseous fluid exceeding a threshold concentration. The threshold concentration is defined in accordance with a type of the particles of interest and a residence time of the sample.
Abstract:
This invention discloses a compact laser induced breakdown spectroscopy (LIBS) apparatus suitable for field operations. The LIBS apparatus comprises a Q-switched laser with laser pulse energy between several tens and several thousands of micro joules (μJ), which is significantly lower than that of traditional LIBS lasers. The spectrograph of the LIBS apparatus employs a dual CCD (charge coupled device) design, which maintains compact size and in the meantime offers large spectral coverage and high spectral resolution.
Abstract:
Methods and systems for characterizing particles in an aerosol are disclosed. A system includes a collection container that utilizes the principles of elutriation to collect particles of selected aerodynamic diameter ranges within a measurement region. A particle detector is used to detect and characterize particles that have settled into the measurement region.
Abstract:
Disclosed is an apparatus for optical emission spectroscopy which includes a light measuring unit measuring light in a process chamber performing a plasma process on a substrate, a light analyzing unit receiving light collected from the light measuring unit to analyze a plasma state, a control unit receiving an output signal of the light analyzing unit to process the output signal, and a light collecting controller disposed between the process chamber and the light measuring unit so as to be combined with the light measuring unit. The light collecting controller controls the light collected to the light measuring unit.
Abstract:
An etching apparatus calculates an emission intensity in the vicinity of each of a plurality of wavelengths, at which a specified element should emit light, from information indicating light emission measured by an optical emission spectroscope during etching processing and, if it is determined that the calculated emission intensity information and emission intensity information stored in a storage unit are similar, extracts a wavelength, corresponding to the calculated emission intensity, with the wavelength associated with the element.
Abstract:
A LIBS analyzer, preferably handheld, includes a laser configured to produce a plasma on a sample and a spectrometer responsive to radiation emitted from the plasma and configured to produce a spectrum. A controller subsystem is configured to control energizing the laser and to analyze the resulting spectrum from each laser pulse to determine if the laser is aimed at a sample. If the analyzed spectrum reveals the laser is not aimed at the sample, the controller subsystem halts the laser puke sequence.
Abstract:
An emission signal visualization device includes a front video camera for photographing a measured object from the front, a signal detecting sensor for detecting an emission signal generated from the measured object, a lateral video camera for photographing the signal detecting sensor from a lateral, a spectrum analyzer, and an analyzing body unit, and records and analyzes the state of the spatial distribution of signals detected by the signal detecting sensor.
Abstract:
Systems, methods, compositions, and apparatus for laser induced ablation spectroscopy are disclosed. A sample site position sensor, stage position motors operable to move the stage in three independent spatial coordinate directions, and a stage position control circuit can move an analysis sample site to selected coordinate positions for laser ablation. Light emitted from a plasma plume produced with laser ablation can be gathered into a lightguide fiber bundle that is subdivided into branches. One branch can convey a first portion of the light to a broadband spectrometer operable to analyze a relatively wide spectral segment, and a different branch can convey a second portion of the light to a high dispersion spectrometer operable to measure minor concentrations and/or trace elements. Emissions from a plasma plume can be simultaneously analyzed in various ways using a plurality of spectrometers having distinct and/or complementary capabilities.