Abstract:
This ion milling device is provided with a vacuum chamber (105), an exhaust device (101) for evacuating the interior of the vacuum chamber, a sample stage (103) for supporting a sample (102) to be irradiated inside the vacuum chamber, a heater (107) for heating the interior of the vacuum chamber, a gas source (106) for introducing into the vacuum chamber a gas serving as a heating medium, and a controller (110) for controlling the gas source, the controller controlling the gas source so that the vacuum chamber internal pressure is in a predetermined state during heating by the heater. This enables the control in a short time of the temperature for suppressing condensation, or the like, occurring at atmospheric release after cooling and ion milling a sample.
Abstract:
A plasma etching apparatus 11 includes a mounting table that holds a semiconductor substrate W thereon; a first heater 18a that heats a central region of the semiconductor substrate W held on the mounting table 14; a second heater 18b that heats an edge region around the central region of the semiconductor substrate W held on the mounting table 14; a reactant gas supply unit 13 that supplies a reactant gas for a plasma process toward the central region of the semiconductor substrate W held on the mounting table 14; and a control unit 20 that performs a plasma etching process on the semiconductor substrate W while controlling the first heater 18a and the second heater 18b to heat the central region and the edge region of the processing target substrate W held on the mounting table 14 to different temperatures.
Abstract:
The present invention relates to an electron microscope plasma cleaner for cleaning an electron microscope by using plasma, the cleaner including a vacuum chamber in which the sample is disposed; an electron gun for producing the electron beam and outputting the produced electron beam to the sample; an electron lens for magnifying the electron beam transmitting the sample and projecting the electron beam onto a fluorescent screen; a radio frequency controller for producing a first signal having radio frequency within a given range; and a plasma head for producing the plasma, receiving the first signal from the radio frequency controller, producing activated oxygen radicals and ions by using the plasma and the first signal, and supplying the activated oxygen radicals and ions to the interior of the vacuum chamber.
Abstract:
A low temperature device has a low temperature container with an investigational opening. A material sample to that is to be examiner is mounted on a sample-holding device in the low temperature container. A sample that is fastened to the sample holding device can be cooled to the desired temperature using a cooling device, such as a pulse tube cooler, with a cold head that is inside the low temperature container. The sample holder is disposed in the low temperature container in such a way that the sample can be seen through the investigational opening. Because the investigational opening is flexible and not rigidly connected to the low temperature container, vibrations produced by the mechanical cooling device are prevented from being transferred to the investigational opening. Thus, a vibration-sensitive investigating and manipulating device can be coupled to the investigational opening without vibrations being transferred to the investigating and manipulating device.
Abstract:
A substrate heating pedestal for a process chamber for processing substrates is described. The pedestal comprises an annular plate comprising a surface having an array of recesses. A plurality of ceramic balls are each positioned in a recess on the surface of the annular plate to define a substrate receiving surface. A heating element is embedded in the annular plate.
Abstract:
An improved cryogenic specimen holder for imaging and analysis facilitates imaging at very high tilt angles with a large field of view. A retractable specimen holder tip protects the specimen during transport. An optimized Dewar design is positioned at a fixed, tilted angle with respect to the axis of the holder, providing a means of continuously cooling the specimen irrespective of the high tilt angle and amount of liquid nitrogen present in the vessel. The Dewar neck design reduces entrapment of nitrogen gas bubbles and its shape prevents the spilling of liquid nitrogen at high tilt angles. The specimen holder has a retractable tip that completely encapsulates the specimen within a shielded environment internal to the specimen holder body. The cooling and specimen transfer mechanisms reduce thermal drift and the detrimental effects of vibrations generated by both the evaporation of liquid nitrogen present in the Dewar and other environmental effects.
Abstract:
A chuck for a plasma processor comprises a temperature-controlled base, a thermal insulator, a flat support, and a heater. The temperature-controlled base is controlled in operation a temperature below the desired temperature of a workpiece. The thermal insulator is disposed over at least a portion of the temperature-controlled base. The flat support holds a workpiece and is disposed over the thermal insulator. A heater is embedded within the flat support and/or mounted to an underside of the flat support. The heater includes a plurality of heating elements that heat a plurality of corresponding heating zones. The power supplied and/or temperature of each heating element is controlled independently. The heater and flat support have a combined temperature rate change of at least 1° C. per second.
Abstract:
A tubular electrode (215) and a tubular magnet (216) are installed on an external section of a processing furnace (202) for an MMT device. A susceptor (217) for holding a wafer (200) is installed inside a processing chamber (201) of the processing furnace. A gate valve (244) for conveying the wafer into and out of the processing chamber; and a shower head (236) for spraying processing gas in a shower onto the wafer, are installed inside the processing furnace. A high frequency electrode (2) and a heater (3) are installed inside the susceptor (217) with a clearance between them and the walls forming the space. The clearances formed between the walls forming the space in the susceptor and the high frequency electrode and the heater prevent damage to the high frequency electrode and the heater even if a thermal expansion differential occurs between the high frequency electrode, the heater and the susceptor.
Abstract:
A sample holder for efficiently performing the processing or observation of a sample by means of charged particles while cooling. Particularly, disclosed is a sample holder whereby the processing or observation of a material which may be affected by the influence of heat damage can be performed in a state in which the material is cooled, and furthermore, the influence due to a sample processing method using charged particles can be reduced by cooling. The sample holder is provided with a sample stage capable of fixing a sample piece extracted from a sample by ion beam irradiation, and a rotation mechanism for rotating the sample stage in a desired direction, which can be attached to an ion beam device and a transmission electron microscope device, and which has a movable heat transfer material for thermally connecting the sample stage and a cooling source, and an isolation material for thermally isolating the sample stage and the heat transfer material from the outside. According to the sample holder, the processing or observation of a sample by means of charged particle beams can be performed while efficiently cooling.
Abstract:
A method of determining the temperature of a sample carrier in a charged particle-optical apparatus, characterized in that the method comprises the observation of the sample carrier with a beam of charged particles, the observation giving information about the temperature of the sample carrier. The invention is based on the insight that a charged particle optical apparatus, such as a TEM, STEM, SEM or FIB, can be used to observe temperature related changes of a sample carrier. The changes may be mechanical changes (e.g. of a bimetal), crystallographic changes (e.g. of a perovskite), and luminescent changes (in intensity or decay time). In a preferred embodiment the sample carrier shows two bimetals, showing metals with different thermal expansion coefficients, bending in opposite directions. The distance between the two bimetals is used as a thermometer.