Abstract:
A transparent conducting electrode using a metamaterial high pass filter includes a substrate and a metal layer. The metal layer is disposed on a surface of the substrate and has a plurality of periodic patterns, wherein the plurality of periodic patterns are interconnected to form a metamaterial structure with subwavelength meshes, and a size of open area of the periodic pattern is smaller than the average wavelength of visible light. The abovementioned transparent conducting electrode using the metamaterial high pass filter has advantages of higher transmittance, conductivity and flexibility and lower process temperature.
Abstract:
A flexible circuit board is described that includes a flexible substrate, at least one ridge defining a flexion zone and a component mounting area. The flexion zone acting to dissipate at least a portion of a force applied to the substrate, so as to insulate the component mounting area from the force. Light sources using such flexible circuit boards and methods for making such circuit boards are also described.
Abstract:
A baking method for metallic paste on transparent substrate first prepares a thin transparent substrate coated with metallic paste and the thin transparent substrate is arranged in roll-to-roll or in batch to a baking area of a baking device. A near-infrared light source with a predetermined distance with the baking area is provided, and the near-infrared light source irradiates a near-infrared light with predetermined wavelength to the thin transparent substrate for baking process. In baking operation, the thin transparent substrate is placed on the baking area for static baking or dynamic baking. The thin transparent substrate is then sent to a cooling stabilization area for normal cooling.
Abstract:
A circuit board having an interior space includes a multi-layer structure and a compartmentalized frame embedded in the multi-layer structure. The multi-layer structure has a plurality of plates stacked along a stacking direction and a gel combining any two adjacent plates. The plates include two outer plates and at least one inner plate arranged between the outer plates. The compartmentalized frame defines a predetermined space. The compartmentalized frame is arranged between the outer plates and substantially abuts the outer plates. The compartmentalized frame is arranged in a path of a flowing direction of gel which flows toward the predetermined space to prevent any gel from flowing into the predetermined space. Thus, the circuit board of the instant disclosure is provided with the interior space accurately formed by embedding the compartmentalized frame.
Abstract:
A manufacturing method of a substrate structure includes the following steps. A substrate including a supporting layer, two release layers and two base metal layers is provided. The release layers are disposed on two opposite surfaces of the supporting layer respectively. Each base metal layer covers each of the release layers. A first patterned solder-resist layer is formed on each of the base metal layers. A stacking layer is laminated on each of the base metal layers to cover each of the first patterned solder-resist layers. Each stacking layer includes a dielectric layer and a metal foil. Each dielectric layer is disposed between the corresponding base metal layer and the corresponding metal foil. Each base metal layer is separated from the supporting layer. Each base metal layer is patterned to form a patterned metal layer on each stacking layer. Each patterned metal layer exposes the corresponding first patterned solder-resist layer.
Abstract:
A filling method of conductive paste includes a step of providing a protective film on a principal surface of a metal foil clad laminated sheet, a step of forming bottomed via holes, a step of from a surface to a midway thereof to forma conductive paste flowing groove having the via holes, a step of disposing a housing member on the film, and thereby, causing conductive paste injecting channel and a vacuum evacuating channel to communicate with a conductive paste flowing space S, a step of depressurizing the space S via the channel, and a step of injecting conductive paste into the space S via the channel, and thereby, filling an inside of the via holes with the conductive paste.
Abstract:
A polymer composition that comprises an aromatic polyester, a laser activatable additive, and a mineral filler is provided. The mineral filler has a median size of about 35 micrometers or less and the laser activatable additive has a mean size of about 1000 nanometers or less.
Abstract:
Disclosed is a double-sided flexible printed circuit board, including a flexible substrate including at least one via hole and a via formed therein to connect circuit wirings respectively formed on both sides of the substrate; a patterned wiring layer formed by printing a conductive paste composition in a predetermined circuit wiring pattern on each of both sides of the flexible substrate; an electroless metal plating layer formed on the patterned wiring layer; and a metal plating layer additionally formed on the electroless metal plating layer to increase electrical conductivity of a wiring including the patterned wiring layer and the electroless metal plating layer formed on each of both sides of the flexible substrate, wherein the circuit wirings respectively patterned on both sides of the flexible substrate are electrically connected to each other through the via formed in the via hole. Also provided is a method of manufacturing the same.
Abstract:
Provided is a touch panel including a cover substrate including an active area and an unactive area, and a printing layer on the unactive area. The printing layer has surface roughness in a range of 0.4 μm to 0.6 μm. The printing layer has straightness in a range of ±0.1 μm to ±10 μm.
Abstract:
Flexible electronic structure and methods for fabricating flexible electronic structures are provided. An example method includes applying a first layer to a substrate, creating a plurality of vias through the first layer to the substrate, and applying a second polymer layer to the first layer such that the second polymer forms anchors contacting at least a portion of the substrate. At least one electronic device layer is disposed on a portion of the second polymer layer. At least one trench is formed through the second polymer layer to expose at least a portion of the first layer. At least a portion of the first layer is removed by exposing the structure to a selective etchant to providing a flexible electronic structure that is in contact with the substrate. The electronic structure can be released from the substrate.