Abstract:
A modular heat-radiation structure includes a module 5 for generating heat, including a first main unit 5a having a fixing hole 5e and a lead 5L for connecting to the printed circuit board 3, a heat-radiation fin 7, fixed to the top face of the first main unit 5a, for radiating heat generated in the module 5, a resin-made and insulating heat shield 9 inserted between the printed circuit board 3 and the first main unit 5a, and a screw 13 for fixing the heat shield 9, the module 5, and the heat-radiation fin 7, where a lead hole 9L for allowing the lead 5L to pass therethrough and a first fixing hole 9e for allowing the screw 13 to pass therethrough are provided in the heat shield 9, and a second fixing hole 3e for allowing the screw 13 to pass therethrough is provided in the printed circuit board 3.
Abstract:
A through hole 2 in a circuit board 1 and to be joined to a lead 5 in a surface mounting component 6 is prepared from a material such as nickel, and palladium having a thermal conductivity equal to or less than 100 W/m.K, the circuit board 1 involving a alloy layer composed of at least a member selected from elements of solder 8, a pad 7, and the lead 5 in a solder joined site of the lead 5 and the pad 7, whereby a quantity of heat transmitted to the joined site via the through hole 2 is reduced at the time when wave-soldering is applied to the back of the circuit board 1 after the surface mounting component 6 was mounted, so that the joined site is maintained at a temperature equal to or less than a melting point of the alloy layer, and hence, exfoliation in an interface of the joined site is prevented, and reliability in the joint of the lead 5 and the pad 7 is elevated.
Abstract:
A multilayered board data input unit inputs design data of a multilayered circuit board provided with through holes penetrating and mutually connecting solid-layer conductors disposed in a multilayer manner. A limitation rule setting unit sets a limitation rule for limiting the number of solid-layer conductors to be connected to the through holes. A separation processing unit separates connections of the solid-layer conductors to the through holes in the design data based on the limitation rule. At this time, when a solid-layer conductor to be separated from the through holes is selected as a candidate, the separation processing unit determines whether the solid-layer conductor is isolated by separation, when the solid-layer conductor is not isolated, determines isolation, and when the solid-layer conductor is isolated, stops separation.
Abstract:
A soldering method for soldering an electronic part on a substrate by reflow soldering is disclosed that includes the steps of applying a solder paste on the substrate; mounting the electronic part on the substrate by using the solder paste; disposing a heat capacity enhancing member on the electronic part, the heat capacity enhancing member including a gel-like material able to enhance the heat capacity of the electronic part; and soldering the electronic part onto the substrate by reflow soldering with the heat capacity enhancing member being applied thereon.
Abstract:
Electrically conductive devices and methods of making such devices are disclosed. One such device has a fusible conductor and a substrate. The substrate may support the fusible conductor. The substrate may have an outer perimeter and within the outer perimeter the substrate may have a heat-transfer-resisting material-deficient portion proximate to the fusible conductor.
Abstract:
The present invention is one where, in a lead wire led-out type crystal oscillator of constant temperature type for high stability, comprising: a heat supply body that supplies heat to a crystal resonator from which a plurality of lead wires are led out, to maintain the temperature constant; an oscillating element that constitutes an oscillating circuit together with the crystal resonator; a temperature control element that constitutes a temperature control circuit for controlling the temperature of the crystal resonator; and a circuit board for mounting the heat supply body, the oscillating element, and the temperature control element, and through which lead wires of the crystal resonator are passed through for mounting, the heat supply body comprises: a heat conducting plate which has through-holes for the lead wires and is mounted on the circuit board, and which faces, and is directly thermally joined to, the crystal resonator; and a chip resistor for heating which is mounted on the circuit board adjacent to the heat conducting plate, and is thermally joined to the heat conducting plate. As a result, a lead wire led-out type crystal oscillator of constant temperature type for high stability wherein the structure is simplified, and in particular the height dimension is reduced can be provided. Moreover, the present invention is a constant temperature type surface mounting type crystal oscillator which uses a crystal resonator for surface mounting which is mounted on the circuit board together with the oscillating elements and temperature control elements, and is constructed such that the crystal resonator is arranged on a ceramic substrate, and at least a chip resistor for heat generation and a highly temperature-dependent highly heat sensitive element are arranged on the ceramic substrate. The structure is such that the crystal resonator is arranged on one principal plane of the ceramic substrate, and the chip resistor and the temperature sensitive element are arranged on the other principal plane of the ceramic substrate, and the other principal plane of the ceramic substrate is positioned facing one principal plane of the circuit board, and heat conductive resin is interposed between the chip resistor and the circuit board. A surface mounted crystal oscillator of constant temperature type in which miniaturization is advanced, and the structure is simplified, is provided.
Abstract:
Apparatus for protection against undesired thermal transfer comprising a printed circuit board (15), an infrared sensing device (100) electrically connected to the printed circuit board (15) by way of an electrical lead (12), and solid thermally insulating material (18, 20) between the board (15) and the device (100) and protecting that side of the device (100) facing the board (15) from thermal transfer from the board (15) to the device (100). The solid thermally insulating material (18) bounds a passageway (19) in the material (18) through which the lead (12) passes. Advantageously, the in sensing device (100) is in thermal communication with a heat sink (14) and the solid therm:ally insulating material (20) protects the heat sink (14) also against such thermal transfer from the board (15), i.e. thermal radiation from the board (15) and thermal convection currents induced by the board (15).
Abstract:
A heat-insulating member for a circuit assembly is interposed between a bus bar substrate to construct a circuit assembly in a compact structure and to provide a heat-insulating member that can be easily installed in the circuit assembly and constructed effectively in a thermal design. A control circuit substrate for performing a heat-insulating function between both the substrates. The bus bar substrate includes a plurality of bus bars constituting an electrical power circuit, circuit components to be connected to the electrical power circuit, and a plurality of upright terminals extending from the given bus bars. The control circuit substrate includes a control circuit for controlling the circuit components and is provided with through-holes into which the upright terminals are inserted and connected electrically. The control circuit substrate is disposed substantially in parallel to the bus bar substrate. The heat-insulating member includes a body section disposed between both the substrates and positioning and reinforcing sections for positioning the upright terminals at the positions corresponding to the through-holes and preventing the upright terminals from being deformed between both the substrates, respectively.
Abstract:
In a compact radio frequency module, a first chip forms a heater element and a second chip forms a device whose operating characteristics vary with temperature change or whose maximum operating temperature is lower than the maximum operating temperature of the first chip. A multilayer substrate has a plurality of dielectric layers and a plurality of conductor layers and mechanically supports the firs chip and the second chip with some of the conductor layers electrically connected with these chips. The module can conduct the heat generated by the first chip throughout the module; guide the heat generated by the first chip from the module's top face side to its bottom face side; and interrupt the heat conduction from the first conductor pattern on which the first chip is placed to the second conductor pattern on which the second chip is placed.
Abstract:
A printed circuit board having circuit patterns printed thereon has a plurality of composite lands each including a first land having a terminal hole formed at its center for inserting the terminal of a selected electric or electronic part or device, and a plurality of second lands each being contiguous to and extending outwards from the first land. The areas contiguous to the contours of the first and second lands have no conductive foils, such as copper foils, thereon such that the substrate surface of the printed circuit board is exposed in these areas. The exposed areas are effective to confine the thermal energy in the limited areas for soldering. And the composite land shape defines a ridged cone-like solder lump, which can fixedly grip the terminal of the part or device.