Abstract:
A method of making a semiconductor chip assembly includes providing first and second posts, first and second adhesives and a base, wherein the first post extends from the base in a first vertical direction into a first opening in the first adhesive and is located within a periphery of the second post, the second post extends from the base in a second vertical direction into a second opening in the second adhesive and the base is sandwiched between and extends laterally from the posts, then flowing and solidifying the adhesives, then providing a conductive trace that includes a pad and a terminal, wherein the pad extends beyond the base in the first vertical direction and the terminal extends beyond the base in the second vertical direction, providing a heat spreader that includes the posts and the base, then mounting a semiconductor device on the first post, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
A female circuit board for use with a male circuit board has electrically conductive projections. The female circuit board includes a flexible insulating film. The flexible insulating film includes insertion portions into which the conductive projections of the male circuit board are allowed to be inserted. Each of the insertion portions includes a plurality of slits communicating with each other at the center of each of the insertion portions. The flexible insulating film further includes electrically conduction portions for making contact with the conductive projections to come into conduction with the male circuit board. The conduction portions are disposed around the insertion portions on the surface of the female circuit board facing the male circuit board when the female circuit board is in contact with the male circuit board. The conduction portions conform in shape to the insertion portions.
Abstract:
An electronic device includes a base body, which has a top side and also an underside lying opposite the top side. The base body has connection locations at its underside. An electronic component is arranged at the base body at the top side of the base body. The base body has at least one side area having at least one point of inspection having a first region and second region. The second region is embodied as an indentation in the first region. The first and the second region contain different materials.
Abstract:
Provided are a spacer capable of avoiding a poor connection due to the suction of solder when the clearance width between a soldered semiconductor device and a printed circuit board is made constant, and a manufacturing method for the spacer. The spacer includes an electrically insulating base member, and at least one solder guiding terminal. The base member has a bottom face, a top face and at least one side face, of which the bottom face and the top face are out of contact with each other whereas the side face contacts one or both the bottom face and the top face. The solder guiding terminal covers the bottom face partially, the top face partially, and the side face partially or wholly. A solder guiding face as the surface of a portion of the solder guiding terminal covering the side face is not normal to the bottom face.
Abstract:
In a multi-layered wiring substrate according to an exemplary aspect of the present invention, a conductor formed in an edge face area functions as a pad for mounting a connector.
Abstract:
Provided is a layered electronic circuit device capable of realizing high-density/high-function mounting, easily inspecting and repairing the respective constituent elements, and improving the electronic connection characteristic. The layered electronic circuit device includes a first circuit substrate (101) and a second circuit substrate (102) which are arranged in parallel such that their substrate surfaces are opposed to each other. The peripheral portion of the first circuit substrate (101) and the peripheral portion of the second circuit substrate (102) are connected to each other by connection members (10a to 10d) having a wiring member (103) and a thermal hardening anisotropic conductive sheet (107), thereby performing electric connection.
Abstract:
A heat conduction board, include a heat dissipation member; a heat conduction member which is arranged on the heat dissipation member and conducts a heat thereto; a lead frame which is formed in a wire pattern shape, and is arranged on the heat conduction member; and a printed circuit board which mounts a second electronic component for controlling a first electronic component; wherein the first electronic component and the printed circuit board are soldered to the lead frame.
Abstract:
An electrical connector comprises an elongated flexible circuit having rigid strips bonded onto one or both sides and one or more ends thereof. The strips contain metallized castellations that are aligned with respective metal traces on the flex circuit and soldered thereto. The flexible portion, along with the attached rigid board(s) forms a plug assembly that mates with a socket having contact pins that engage with their respective metallized castellations, with the castellations providing a self-aligning function. The invention may be used to form a flex cable with connectors on one or both ends. Alternatively, the elongated flexible circuit may represent an extension of a larger flex circuit substrate that further contains other electronic devices mounted thereon. The socket and contact pins are preferably attachable to a motherboard by soldering or other means.
Abstract:
There is provided a stacked mounting structure in which, it is possible to carry out testing of each substrate after the formation of (after manufacturing) the stacked mounting structure.The stacked mounting structure includes a first substrate (10) which includes a first electronic component, a second substrate (20) which is disposed facing the first substrate (10), and which includes a second electronic component, an intermediate member (40) which has a space for accommodating the second electronic component, an electroconductive member (7) which is provided to the intermediate member (40), a first electrode for testing (11a) which is electrically connected to the first electronic component, as an electrode for testing an operation of the first electronic component, a connecting electrode toward the second substrate (22a) which is electrically connected to the second electronic component, as an electrode for electrically connecting to the electroconductive member (7), and a second electrode for testing (12a) which is provided to the first substrate as an electrode for testing an operation of the second electronic component, and which is electrically connected to the second electronic component via the electroconductive member (7) and the connecting electrode toward the second substrate (22a).
Abstract:
In a semiconductor device which has through holes in an end face, in which a semiconductor element is fixedly mounted on a face of a substrate which has a wiring pattern, which is conductive to the wiring portion formed in the through hole, in at least one face, in which electrodes of the semiconductor element are electrically connected to the wiring pattern, and in which the face of the substrate which has the semiconductor element is coated with a resin, the through hole has a through hole land with a width of 0.02 mm or more, which is conductive to the wiring portion, in a substrate face, and the wiring portion and the through hole land are exposed.