Abstract:
A system for reducing an apparent height of a board system is provided. The board system may include, for example, a carrier, a component, a printed circuit board and/or a solder material. The component is mounted on a first side of the carrier. The printed circuit board has a hole that is structured to accommodate the component. The solder material solders the carrier to the printed circuit board and provides a structural bond between the carrier and the printed circuit board. At least one portion of the solder material provides an electrical coupling between the carrier and the printed circuit board and at least one portion of the component is maintained in the hole after the carrier is soldered to the printed circuit board.
Abstract:
A chip card includes a body of electrically insulating layers, one of which carries an open loop antenna having two ends. The body is equipped with a cavity for housing a micromodule adapted for connection to the antenna by two terminals. The micromodule includes an insulating substrate carrying, on a first side, a semiconductor component, and on a second side, several electrical contact pads. Two of the contact pads are disposed in a strip running through a center region of the substrate. The terminals are connected to the two contact pads through the substrate, and the two pads are respectively connected to ends of the antenna.
Abstract:
In one embodiment of the invention, a stacking element includes a printed circuit board (PCB) and a plurality of solder bumps. The PCB has a top side and a bottom side. The top side is attached to first pins of a first device. The plurality of solder bumps are on the bottom side and attached to upper areas of second pins of a second device to provide electrical connections between the first pins and the second pins.
Abstract:
The present invention relates to a bump formation method, comprising the steps of providing a mask, in which a plurality of openings have been formed corresponding to a plurality of electrode pads, to a substrate provided with this plurality of electrode pads, filling the openings with a solder paste, and heat treating the solder paste. The solder paste contains a solder powder. This solder powder is one that contains no more than 10 wt % particles whose diameter is greater than the thickness of the mask and no more than 1.5 times this thickness. Preferably, this solder powder is one that contains no more than 10 wt % particles whose diameter is greater than 40% of the diameter of the openings, or one that contains no more than 30 wt % particles whose diameter is 40 to 100% the thickness of the mask.
Abstract:
A solder ball array type package structure is able to control collapse. The package includes a substrate, a carrier, a plurality of dies, a molding compound and a plurality of solder balls. The substrate has at least one active surface. Pads are located on the first surface of the substrate. The carrier has at least an active surface and a back surface opposite the active surface. A plurality of dies are located on the back surface and the active surface of the carrier. The dies arranged on the active surface are electrically connected to the carrier by flip chip technology. A molding compound encapsulates on the back surface of the carrier to cover the dies on the back surface of the carrier. Solder balls having a base material are provided on the active surface of the carrier in array. At least three solder balls coated with the base material having a high melting-temperature core are further provided in the periphery of the array. The carrier is arranged such that the active surface faces the first surface of the substrate to allow each solder ball correspond to the one of the pads, respectively.
Abstract:
A liquid crystal device 100 includes a liquid crystal panel 110, a plastic frame 120 arranged to overlap with the liquid crystal panel 110, a light diffusing layer 130 arranged to overlap with the frame 120, a flexible wiring substrate 140 mounted on the liquid crystal panel 110, and a circuit wiring substrate 150 arranged to be connected to the flexible wiring substrate 140 and overlap with the light diffusing layer 130. The light diffusing layer 130 is made of a material having good heat insulating property to prevent thermal deformation or thermal deterioration of the frame due to the heat produced during connection of the flexible wiring substrate 140 and the circuit wiring substrate 150
Abstract:
In a flexible multilayer wiring board, a first conductive pattern provided on a first flexible base material and a second conductive pattern provided on a second flexible base material are made to conduct via a first conductive body filled in a first through hole. Hereby, a flexible multilayer wiring board of which the productivity is satisfactory, which is low-priced and highly reliable in connection can be provided.
Abstract:
A method and apparatus are provided for mounting circuit elements on a printed wiring board, wherein an integrated circuit having terminals with a first interterminal pitch are mounted onto a first surface of a terminal density conversion board which converts the first interterminal pitch of the integrated circuit to terminals with a second interterminal pitch larger than the first interterminal pitch on a second surface of the terminal density conversion board; and the terminals on the second surface of the terminal density conversion board with the second interterminal pitch are mounted onto the printed wiring board.
Abstract:
In general, in one aspect, the invention features a connection between a through-hole in a circuit board and a contact region on a component. The contact region has a surface bearing a depression. A continuous solder column has one end of that forms a solder joint with an inner wall of the through-hole and the other end of that forms a solder joint with the contact region.
Abstract:
A method and an arrangement for connecting a component, such as a chip (6), on a substrate (7) to a conductive surface of a carrier. The conductive surface can be an earth plane (10) and the carrier can be a printed circuit board. The method and arrangement allow the component to thermally conduct and/or electrically conduct onto the conductive surface.