Abstract:
An electromagnetic compound objective lens is provided for charged particle device, especially as an objective lens of low-voltage scanning electron microscope (LVSEM), which comprises a magnetic immersion lens and an electrostatic immersion lens. The magnetic immersion lens orients its gap between an inner pole piece and an outer pole piece to specimen's surface, and uses a magnetic specimen stage. The electrostatic immersion lens comprises three or four electrodes which apply suitable retarding field to a primary beam of the charged particle device for reducing its landing energy on specimen surface and further eliminating imaging aberrations.
Abstract:
An electron beam apparatus has an optical axis, an electron beam source for generating an electron beam directed along the optical axis, and a magnetic field lens having an axis coincident with the optical axis for focusing the electron beam onto a sample which is subjected to a negative voltage so that secondary electrons are emitted from the sample. The magnetic field lens has a conductive cylinder surrounding a part of the optical axis to permit the passage therethrough of an electron beam from the electron beam source. A first detector detects secondary electrons emitted by the sample in a direction away from the optical axis and is disposed at a position generally confronting the conductive cylinder. A second detector is disposed over the conductive cylinder. A Wien filter deflector deflects secondary electrons emitted by the sample toward and for detection by the second detector. The Wien filter deflector is disposed on the optical axis and between the conductive cylinder and the second detector.
Abstract:
The present invention provides an aberration corrector functioning under a condition outside the setting optical condition of an incorporated charged particle beam apparatus. An intermediate potential region different from the ground potential of an aberration corrector is provided in the space between the stages of multipole lenses constructing the aberration corrector to adjust a potential. Using this, when selecting an incident (outgoing) condition, an outgoing (incident) condition can be adjusted.
Abstract:
An electron beam exposure apparatus which minimizes the influence of the space charge effect and aberrations of a reduction electron optical system, and simultaneously, increases the exposure area which can be exposed at once, thereby increasing the throughput. An electron beam exposure apparatus having a source for emitting an electron beam and a reduction electron optical system for reducing and projecting, on a target exposure surface, an image of the source, includes a correction electron optical system which is arranged between the source and the reduction electron optical system to form a plurality of intermediate images of the source along a direction perpendicular to the optical axis of the reduction electron optical system, and corrects in advance aberrations generated when the intermediate images are reduced and projected on the target exposure surface by the reduction electron optical system.
Abstract:
The invention relates to a detector objective lens and a charged particle am device with such a detector objective lens containing a main lens for focussing a charged particle beam on a specimen, which consists of a magnetic lens (60) and an electrostatic lens (61) and a detector (62) disposed in front of the magnetic lens (60) in the direction of the charged particle beam (2) for detecting the charged particles released at the specimen (8). An additional lens is provided for influencing the released charged particles, which generates an electrostatic and/or magnetic field and is disposed between the main lens and the detector, the fields of the main lens and said additional lens being substantially separated from each other.
Abstract:
An electrostatic-magnetic lens arrangement is for focusing charged particles as well as a charged particle beam device with such a lens arrangement which has a magnetic lens and an electrostatic lens incorporated into the magnetic lens, the magnetic lens being constructed as a single-pole lens.
Abstract:
A magnetic immersion field emission electron gun has a vacuum vessel having a central axis in a predetermined direction, a cathode arranged along the central axis of the vacuum vessel for generating an electron beam, an anode for forming an electron beam path by accelerating a generated electron beam in the central axis direction, an electrostatic lens arranged between the cathode and anode for generating an electric field which focuses an accelerated electron beam toward the central axis, a magnetic field generating element arranged around the electron beam path for generating a magnetic field for focusing the electron beam in order to preventing a diameter of the electron beam from expansion by an aberration of the electrostatic lens, and a moving mechanism for moving the magnetic field generating element at a position where a peak point of a strength of the magnetic field generated by the magnetic field generating element coincides with a portion where the aberration of the electrostatic lens becomes most conspicuous. The electron gun having such a configuration can provide an effect of reducing a spherical and chromatic aberration by efficiently providing a lens characteristic to the electrostatic lens even though the entire length of electrostatic lens is long.
Abstract:
An electrostatic-magnetic lens is provided having either a symmetrical or asymmetrical magnetic lens which is overlaid with an electrostatic immersion lens. One electrode of the immersion lens is formed as a hollow cylinder, which is within an upper pole piece of the magnetic lens concentrically relative to the axis of symmetry thereof and extending into the region of the pole piece gap. The lower pole piece of the magnetic lens is preferably at a ground potential and clad with the beam guiding tube for protection against contamination and forming the lower electrode of the electrostatic immersion lens.
Abstract:
Particle beam systems, for example electron beam microscopes, exhibit improved resolution in a first direction by manipulating a beam of charged particles so that the beam has a non-circular beam profile in a focal plane of an objective lens. Multiple images of a sample can be recorded at different orientations of the beam profile relative to the sample, and the recorded images can be synthesized using non-uniform spatial-frequency weights to obtain an image of the sample having improved resolution in any direction. The orientation of the beam profile can be adjusted to a target orientation depending on a structure on a sample prior to recording an image of the sample, thereby making it possible to achieve highest resolution in a selected direction of interest.
Abstract:
A charged particle beam device is provided in which axis adjustment as a superimposing lens is facilitated by aligning an axis of an electrostatic lens resulting from a deceleration electric field with an axis of a magnetic field lens. The charged particle beam device includes: an electron source; an objective lens that focuses a probe electron beam from the electron source on a sample; a first beam tube and a second beam tube through each of which the probe electron beam passes; a deceleration electrode arranged between the first beam tube and a sample; a first voltage source that forms a deceleration electric field for the probe electron beam between the first beam tube and the deceleration electrode by applying a first potential to the first beam tube; and a first moving mechanism that moves a position of the first beam tube.