Abstract:
A method of intermittently coating a moving surface with paste containing electrochemically active particles by a nozzle having a slot-shaped delivery opening includes supplying paste to the delivery opening from a paste reservoir via a transport channel and regulating paste supply to the delivery opening with a rotatably mounted control axle which enables the paste supply to the delivery opening in a first switching position and, in a second switching position, blocks the transport channel and disconnects a section of the transport channel extending as far as the delivery opening from the paste supply, wherein the rotatably mounted control axle comprises a passage via which the paste reservoir is in communicating connection with the delivery opening in the first switching position and the disconnected section of the transport channel is in communicating connection with the reduced pressure source in the second switching position.
Abstract:
The present disclosure relates to extrusion coating systems, extrusion coated substrates, and processes for making the same. In some aspects, extrusion coating systems as described herein may include an at least partially insulated outlet wall, which may facilitate production of coated substrates exhibiting a very desirable surface texture and appearance. Coated substrates of the present invention may be utilized in a variety of end applications, including, but not limited to, interior and exterior construction materials for homes, buildings, and furniture.
Abstract:
A composite sheet material and method for forming the same is provided that includes a substrate, a matrix, and a cover sheet. The substrate has a first face surface, a second face surface, and a plurality of edges, and includes a thermoplastic material. The matrix is attached to the substrate. The matrix includes a support component having a first melting point, and a thermoplastic component having a second melting point. The second melting point is less than the first melting point. The cover sheet imparts one or more surface characteristics to the composite sheet material during thermo-pressure formation of the composite sheet material.
Abstract:
A coating apparatus includes a backup roller configured to support a web; a slot die disposed opposite to the backup roller, the slot die including a plurality of slots and being configured to eject a plurality of coating liquids from tips of the plurality of slots respectively so as to form beads of the coating liquids in a clearance between the web and a lip surface, which is a tip surface of the slot die, thereby coating the plurality of the coating liquids into multilayers simultaneously on the web being transported; and a depressurizing apparatus. Among the lip surfaces which sandwich the plurality of slots therebetween, a lip surface end portion on a downstream side in a transportation direction of the web of the lip surface with which an interface of the plurality of the coating liquids comes into contact has a curved shape with a convex cross-sectional shape.
Abstract:
A process for preparing a pressure sensitive adhesive using a modified planetary roller extruder is described. The process in accordance with one aspect of the invention is a continuous process that includes introducing primary raw materials comprising a non-thermoplastic elastomer into a planetary roller extruder, introducing a heat-activatable crosslinker into the planetary roller extruder for mixing with the primary raw materials, and compounding the primary raw materials and the heat activatable crosslinker to form an adhesive composition while maintaining the temperature of the adhesive composition between about 25° C. and about 100° C. The non-thermoplastic elastomer is masticated during compounding and at least some of the heat-activatable crosslinker remains generally unactivated and is available for later activation.
Abstract:
A free radical curable liquid for inkjet printing of food packaging materials includes no initiator or otherwise one or more initiators selected from the group consisting of non-polymeric di- or multifunctional initiators, oligomeric initiators, polymeric initiators, and polymerizable initiators; wherein the polymerizable composition of the liquid consists of: a) 25-100 wt % of one or more polymerizable compounds A having at least one acrylate group G1 and at least one second ethylenically unsaturated polymerizable functional group G2 different from the group G1; b) 0-55 wt % of one or more polymerizable compounds B selected from the group consisting of monofunctional acrylates and difunctional acrylates; and c) 0-55 wt % of one or more polymerizable compounds C selected from the group consisting of trifunctional acrylates, tetrafunctional acrylates, pentafunctional acrylates and hexafunctional acrylates.
Abstract:
A coating apparatus and method are disclosed that applies a coating to a product in a uniform and controlled manner. The coating apparatus comprises a feeding stage, an optional pre-treatment stage, at least one coating stage and a finishing stage. The coating stage(s) comprise a coating material feeder and a coating device. The coating device includes an aperture conforming to the perimeter of a substrate to be coated in a first and second dimension. As the substrate passes through the aperture, coating material is applied in a uniform and consistent layer. The coating material also back fills minor surface imperfections and blemishes on the substrate to achieve a consistent finish across the whole area where coating material is applied.
Abstract:
The present invention relates to a continuous process for producing insulated pipes comprising a conveying pipe, a jacketing pipe, a layer made of at least one polyurethane between conveying pipe and jacketing pipe, and a foil tube between the at least one polyurethane and the jacketing pipe, comprising at least the steps of (A) in a gripper-belt system, providing a foil tube formed continuously from a foil, and providing a conveying pipe, where the arrangement has the conveying pipe within the foil tube in such a way that an annular gap is formed between conveying pipe and foil tube, (B) charging a polyurethane system comprising at least one isocyanate component (a) and at least one polyol mixture (b) to the annular gap, (C) foaming the polyurethane system and allowing the same to harden, and (D) applying a layer made of at least one thermoplastic to the foil tube via extrusion, in order to form the jacketing pipe, which comprises using a multiple nozzle system having curvature corresponding to the radius of the annular gap to charge the material in step (B).
Abstract:
A microstructured article includes a nanovoided layer having opposing first and second major surfaces, the first major surface being microstructured to form prisms, lenses, or other features. The nanovoided layer includes a polymeric binder and a plurality of interconnected voids, and optionally a plurality of nanoparticles. A second layer, which may include a viscoelastic layer or a polymeric resin layer, is disposed on the first or second major surface. A related method includes disposing a coating solution onto a substrate. The coating solution includes a polymerizable material, a solvent, and optional nanoparticles. The method includes polymerizing the polymerizable material while the coating solution is in contact with a microreplication tool to form a microstructured layer. The method also includes removing solvent from the microstructured layer to form a nanovoided microstructured article.
Abstract:
A system comprises a slot die including an applicator slot extending about a width of the slot die, wherein the applicator slot is in fluid communication with a fluid flow path through the slot die, and a plurality of actuators spaced about the width of the slot die, wherein each actuator in the plurality of actuators is operable to adjust a cross-directional thickness of the fluid flow path at its respective location to provide a local adjustment of fluid flow through the applicator slot. The system further comprises a controller configured to set the position of each actuator according to one of a plurality of discrete settings for operation of the slot die. The controller is further configured to, using fluid dynamics and a digital model of the die, predict a set of discrete settings from the plurality of discrete settings corresponding to a preselected cross-web profile for the extrudate.