Abstract:
The embodiments disclosed herein include all-electron control over a chemical attachment and the subsequent self-assembly of an organic molecule into a well-ordered three-dimensional monolayer on a metal surface. The ordering or assembly of the organic molecule may be through electron excitation. Hot-electron and hot-hole excitation enables tethering of the organic molecule to a metal substrate, such as an alkyne group to a gold surface. All-electron reactions may allow a direct control over the size and shape of the self-assembly, defect structures and the reverse process of molecular disassembly from single molecular level to mesoscopic scale.
Abstract:
A method for curing photosensitive polyimide (PSPI) films includes the steps of: depositing a PSPI film on a selected substrate, and curing the film by microwave heating at a selected temperature from about 200 to 340° C. in a selected atmosphere containing an oxygen concentration from about 20 to 200,000 ppm. The process atmosphere may be static or flowing. The addition of oxygen improves the removal of acrylate residue and improves the Tg of the cured film, while the low processing temperature characteristic of the microwave process prevents the oxygen from damaging the polyimide backbone. The method may further include the steps of photopatterning and developing the PSPI film prior to curing. The process is particularly suitable for dielectric films on silicon for electronic applications.
Abstract:
A method for orienting elongated objects arranged on the surface of a substrate, the elongated objects extending according to an initial orientation, the method including depositing on the surface of the substrate at least one layer of a soft material covering at least partially a portion of the elongated objects, and applying a mechanical stress on at least one portion of the layer of soft material in such a way as to modify the orientation of at least one portion of the elongated objects.
Abstract:
A manufacturing method includes providing a substrate with an outer surface and at least one interior space, selectively deposited a coating on a portion of the substrate to form a selectively deposited coating having one or more grooves formed therein. The method further includes processing at least a portion of the surface of the selectively deposited coating to plastically deform the selectively deposited coating in the vicinity of the top of a respective groove. An additional coating is applied over at least a portion of the surface of the selectively deposited coating. A component is disclosed and includes a substrate, a selectively deposited coating disposed on at least a portion of the substrate, and defining one or more grooves therein, and an additional coating disposed over the selectively deposited coating. The substrate, the selectively deposited coating and the additional coating defining one or more channels for cooling the component.
Abstract:
A system (100) for additively manufacturing a composite part (102) is disclosed. The system (100) comprises a housing (104) and a nozzle (107). The nozzle (107) is supported by the housing (104). The nozzle (107) comprises an outlet (110), sized to dispense a continuous flexible line (112). The continuous flexible line (112) comprises a non-resin component (114) and a photopolymer-resin component (116). The system (100) also comprises a feed mechanism (118), supported within the housing (104). The feed mechanism (118) is configured to push the continuous flexible line (112) out of the outlet (110) of the nozzle (107). The system (100) further comprises a light source (120), supported by the housing (104). The light source (120) is configured to deliver a light beam to the continuous flexible line (112) after the continuous flexible line (112) exits the outlet (110) of the nozzle (107) to at least partially cure the photopolymer-resin component (116) of the continuous flexible line (112).
Abstract:
A method (500) of additively manufacturing a composite part (102) comprises applying a first quantity of a first part (253) of a thermosetting resin (252) to a first element (271) of a non-resin component (108) by pulling the first element (271) through a first resin-part applicator (236) and applying a second quantity of a second part (255) of the thermosetting resin (252) to a second element (273) of the non-resin component (108) by pulling the second element (273) through a second resin-part applicator (237). The method (500) also comprises combining the first element (271) with the first quantity of first part (253) and the second element (273) with the second quantity of second part (255), to create a continuous flexible line (106). The method (500) additionally comprises routing the continuous flexible line (106) into a delivery guide (112) and depositing, via the delivery guide (112), a segment (120) of the continuous flexible line (106) along a print path (122).
Abstract:
A method (400) of additively manufacturing a composite part (102) comprises applying a liquid photopolymer resin (252) to a non-resin component (108) to create a continuous flexible line (106) by pulling the non-resin component (108) through a vessel (236), containing a volume of the liquid photopolymer resin (252). The continuous flexible line (106) comprises the non-resin component (108) and a photopolymer-resin component (110) that comprises at least some of the liquid photopolymer resin (252) applied to the non-resin component (108). The method (400) further comprises routing the continuous flexible line (106) into a delivery guide (112), pushing the continuous flexible line (106) out of the delivery guide (112), depositing, via the delivery guide (112), a segment (120) of the continuous flexible line (106) along a print path (122), and delivering curing energy (118) at least to a portion (124) of the segment (120) of the continuous flexible line (106).
Abstract:
A method (400) of additively manufacturing a composite part (102) is disclosed. The method (400) comprises applying a thermosetting resin (252) to a non-resin component (108) of a continuous flexible line (106) while pushing the non-resin component (108) through a delivery guide (112) and pushing the continuous flexible line (106) out of the delivery guide (112). The continuous flexible line (106) further comprises a thermosetting resin component (110) that comprises at least some of the thermosetting resin (252) applied to the non-resin component (108). The method (400) further comprises depositing, via the delivery guide (112), a segment (120) of the continuous flexible line (106) along the print path (122).
Abstract:
A method (300) of additively manufacturing a composite part (102) comprises depositing a segment (120) of a continuous flexible line (106) along a print path (122). The continuous flexible line (106) comprises a non-resin component (108) and a photopolymer-resin component (110) that is partially cured. The method (300) also comprises delivering a predetermined or actively determined amount of curing energy (118) at least to a portion (124) of the segment (120) of the continuous flexible line (106) at a controlled rate while advancing the continuous flexible line (106) toward the print path (122) and after the segment (120) of the continuous flexible line (106) is deposited along the print path (122) to at least partially cure at least the portion (124) of the segment (120) of the continuous flexible line (106).
Abstract:
A method (400) of additively manufacturing a composite part (102) comprises applying a thermosetting resin (252) to a non-resin component (108) to create a continuous flexible line (106) by pulling a non-resin component (108) through a first resin-part applicator (236), in which a first quantity of a first part (253) of the thermosetting resin (252) is applied to the non-resin component (108), and by pulling a non-resin component (108) through a second resin-part applicator (237), in which a second quantity of a second part (255) of the thermosetting resin (252) is applied to at least a portion of the first quantity of the first part (253) of the thermosetting resin (252), applied to the non-resin component (108). The method (400) further comprises routing the continuous flexible line (106) into a delivery guide (112) and depositing, via the delivery guide (112), a segment (120) of the continuous flexible line (106) along a print path (122).