Abstract:
An organic molecular film forming apparatus 100 of forming an organic molecular film on a processing target object includes a processing chamber 11 that accommodates therein the processing target object; an organic material gas supplying unit 2 that supplies an organic material gas into the processing chamber 11; and an ultraviolet ray irradiating unit 13 that irradiates ultraviolet ray to at least one of the processing target object, the organic material gas supplied to the processing target object, and a film formed on a surface of the processing target object. At least one of the surface of the processing target object and the organic molecular film formed thereon is activated by irradiating the ultraviolet ray from the ultraviolet ray irradiating unit 13 to at least one of the processing target object, the organic material gas supplied to the processing target object, and the film formed on the processing target object.
Abstract:
Articles, methods of making, and uses for modifying surfaces for liquid repellency are disclosed. The liquid repellant surfaces comprise a surface comprising an anchoring layer. The anchoring layer, which forms an immobilized molecular anchoring layer on the surface, has a head group that is covalently linked to, or adsorbed onto, the surface and a functional group. The functional group of the treated surface has an affinity for a lubricating layer, which is applied to the treated surface. The anchoring layer and replenishable lubricating layer are held together by non-covalent attractive forces. Together, these layers form an ultra-repellant slippery surface that repels certain immiscible liquids and prevents adsorption, coagulation, and surface fouling by components contained within.
Abstract:
An inorganic-organic hybrid coating applied to a polymer and method for forming same to provide improved hydrophilicity and lubricity to the surface of the polymer. The hydrophilic coating is on the order of one micron thick, as is formed by activating the surface of the polymer, reacting the activated surface of the polymer with a Lewis acid metallic composition, and then quenching the coating in salt solution having a pH>7.2 at a temperature above the glass transition temperature (Tg) of the polymer.
Abstract:
Particles are embedded in a substrate by applying to at least a portion of the substrate a fluid and a population of particles, such that the substrate is softened to at least a degree that particles are at least partially embedded in the softened portion of the substrate. The softened portion of the substrate is hardened so as to securely embed the particles in the substrate.
Abstract:
The present invention relates to a preparation method of a tube and a transplantable polymer tube prepared by such method, which includes modifying the inner surface of a tube using plasma. A preparation method of a tube may include preparing a tube, modifying the inner surface of the tube using microplasma so as to have reactivity, forming a thin film layer on the modified surface of the tube to prevent aging or impart adhesiveness, and modifying the surface of the thin film layer using microplasma so as to enhance cell adhesion thereon.
Abstract:
A method of electrostatic spraying of a polymer surface involves oxidation and treating the oxidized surface with a polyamine and an electroconductivity modifying agent which contains a mono-carboxylic acid of from one to 12 carbon atoms.
Abstract:
A method for adhering a hard coat layer to an optical substrate is provided, includes providing an optical substrate, depositing a silicon oxide film on the optical substrate using vacuum deposition, applying a hard coat layer to the silicon oxide film for forming a hard-coated optical substrate, and curing the hard coat layer to form the hard-coated optical substrate. A hard-coated optical substrate includes an optical substrate, a hard coat layer, and a silicon oxide film intermediate the optical substrate and hard coat layer.
Abstract:
A method of toughening thermoplastic polyurethane (TPU). The TPU is dipped into a urethane solution having a penetrating agent, then heated and dried for a period sufficient to toughen the surface. Also, articles such as golf balls having a toughened thermoplastic polyurethane surface. The toughened thermoplastic polyurethane surface is more scuff-resistant and has a greater strain-rate shear resistance than the TPU.
Abstract:
The present invention provides a method for laminating a decorative metal film on a resin base material with excellent adhesion to the resin base material and with a sufficient gloss imparted to the decorative metal film, and a resin base material having a decorative metal film. The method laminates a polymeric planarizing film on the resin base material using a vapor deposition polymerization method, and then laminates the decorative metal film on the planarizing film.
Abstract:
A method for processing a substrate is provided; wherein the method comprises applying a film of a copolymer composition, comprising a poly(styrene)-b-poly(dimethylsiloxane) block copolymer component to a surface of the substrate; optionally, baking the film; subjecting the film to a high temperature annealing process under particularized atmospheric conditions for a specified period of time; followed by a treatment of the annealed film to remove the poly(styrene) from the annealed film and to convert the poly(dimethylsiloxane) in the annealed film to SiOx.