Abstract:
The combination of the Fully Variable Valve Actuation or FVVA system with the Desmodromic control results in a fully functional FVVA rid of valve springs and any other kind of the restoring springs of the art.
Abstract:
No-load valve lift correction curves of opening and closing cams are set by offsetting no-load curve sections of basic valve lift curves of the cams in such directions as to increase a clearance between the curves, and they are connected with remaining sections of the curves to provide normal valve lift curves of the cams. Cam profiles of the cams are set on the basis of such normal valve lift curves. The cam profiles are set so that an ultimate speed difference between jumping and landing speeds of a follower on an ultimate valve speed curve determined from ultimate valve lift curves, having first and second shift sections where the follower shifts from the opening cam to the closing cam and from the closing cam to the opening cam, is smaller than a basic speed difference between jumping and landing speeds on a basic valve speed curve.
Abstract:
A desmodromic valve and cam system is provided which is adapted to be installed into an internal combustion pushrod engine. The system includes a camshaft assembly having a plurality of removably attached cam lobes installed onto a main camshaft; a valve connector assembly installed onto a distal tip of each valve; a rocker having a valve movement end mechanically linked to a respective valve connector and a pushrod connecting end mechanically linked to an upper distal end of a pushrod; a hydraulic lifter follower assembly assigned to each valve which includes a pin disposed on a distal end thereof which is adapted to engage and track a follower groove formed on each respective cam lobe; and a pushrod assigned for each valve, each pushrod having lower distal end mechanically linked to a respective hydraulic follower lifter. The configuration of the aforementioned system eliminates the need to use valve springs to return the valves to a closed position, thereby, increasing horsepower and fuel efficiency, while simultaneously reducing emissions.
Abstract:
A valve actuator assembly includes an axially moveable valve and a ramp roller thrust drive. The ramp roller thrust drive includes at least first and second opposed thrust plates, each plate including one or more ramps. A roller is positioned between corresponding opposed plate ramps and a rotation of one of the thrust plates relative to the other thrust plate causes the plates to move axially relative to one another such that axial motion is imparted to the valve.
Abstract:
A valve-operating device for an engine includes a camshaft which is disposed on one side of a plane including axes of an exhaust valve and an intake valve and which has an axis substantially perpendicular to the plane. The camshaft and the exhaust and intake valves are connected to each other through a first rocker arm and a second rocker arm which are swingably carried on a rocker shaft disposed substantially perpendicular to the plane. The camshaft is formed with a large-diameter exhaust cam and a small-diameter intake cam adjoining a portion of the exhaust cam on the side of the plane. The exhaust and intake rocker arms are provided with arm portions extending in an axial direction of the camshaft to come into sliding contact with outer peripheral surfaces of the exhaust and intake cams, respectively. Thus, it is possible to open and close the exhaust and intake valves with inherent opening and closing timings, while easily avoiding interferences among components.
Abstract:
A valve-operating device for an engine includes a camshaft which is disposed on one side of a plane including axes of an exhaust valve and an intake valve and which has an axis substantially perpendicular to the plane. The camshaft and the exhaust and intake valves are connected to each other through a first rocker arm and a second rocker arm which are swingably carried on a rocker shaft disposed substantially perpendicular to the plane. The camshaft is formed with a large-diameter exhaust cam and a small-diameter intake cam adjoining a portion of the exhaust cam on the side of the plane. The exhaust and intake rocker arms are provided with arm portions extending in an axial direction of the camshaft to come into sliding contact with outer peripheral surfaces of the exhaust and intake cams, respectively. Thus, it is possible to open and close the exhaust and intake valves with inherent opening and closing timings, while easily avoiding interferences among components.
Abstract:
The present invention provides a means to reduce holding current and driving current of EMVD's effectively and practically and to provide soft landing of a valve. The invention incorporates a nonlinear mechanical transformer as part of an EMVD system. The nonlinear mechanical transformer is designed for the spring and the inertia in the EMVD to have desirable nonlinear characteristics. With the presently disclosed invention, the holding current and driving current are reduced and soft valve landing is achieved. The nonlinear characteristics of a nonlinear mechanical transformer can be implemented in various ways. The concept of the invention can be applied not only to EMVD's but also to general reciprocating and bi-stable servomechanical systems, where smooth acceleration, soft landing, and small power consumption are desired.
Abstract:
A low friction valve train actuating at least one valve in an internal combustion engine includes a cam shaft having at least one cam, a tappet contacting the cam and valve, the cam and valve having outer surfaces with an open porosity, a solid film lubricant impregnated and anchored in the open porosity, the solid film lubricant is stable to temperatures at about 700.degree. F. to retain a low coefficient of friction in an oil starved environment.
Abstract:
A valve-adjusting mechanism for an internal combustion engine in which a drive shaft is constructed as reciprocating crankshaft actuating a connecting rod pivotally connected to the crankshaft so as to move to and fro between a fixed support wall and a pivotally supported wedge-shaped adjusting member extending at an acute angle with respect to the support wall; as a result of the wedging action, the adjusting member thereby carries out an up and down movement which is transmitted onto the valve by way of its valve stem.