SPECTROMETER AND MANUFACTURING METHOD THEREOF

    公开(公告)号:US20180017443A1

    公开(公告)日:2018-01-18

    申请号:US15360962

    申请日:2016-11-23

    Abstract: A spectrometer includes an input unit for receiving an optical signal, a diffraction grating disposed on the transmission path of the optical signal for dispersing the optical signal into a plurality of spectral rays, an image sensor disposed on the transmission path of at least a portion of the spectral rays, and a waveguide device. A waveguide space is formed between the first and second reflective surfaces of the waveguide device. The optical signal is transmitted from the input unit to the diffraction grating via the waveguide space. The portion of the spectral rays is transmitted to the image sensor via the waveguide space. At least one opening is formed on the waveguide device, and is substantially parallel to the first and/or second reflective surface. A portion of the spectral rays and/or the optical signal diffuses from the opening out of the waveguide space without reaching the image sensor.

    Optical module of micro spectrometer with tapered slit and slit structure thereof

    公开(公告)号:US09746616B2

    公开(公告)日:2017-08-29

    申请号:US13642828

    申请日:2010-04-29

    Applicant: Cheng-Hao Ko

    Inventor: Cheng-Hao Ko

    Abstract: An optical module of a micro spectrometer with tapered slit and slit structure thereof. The optical module includes an input section and a micro diffraction grating. The input section includes a slit structure, which receives a first optical signal and outputs a second optical signal travelling along a first optical path. The slit structure includes a substrate and a slit, which penetrates through the substrate and has a gradually reduced dimension from a first surface of the substrate to a second surface of the substrate. The micro diffraction grating, disposed on the first optical path, receives the second optical signal and separates the second optical signal into a plurality of spectrum components travelling along a second optical path. The optical module of the micro spectrometer with the tapered slit and slit structure thereof according to the embodiment of the invention can be manufactured in a mass-production manner using the semiconductor manufacturing processes, so that the cost can be decreased, and the slit can have a smooth surface, which avoids the negative effect on the incident light.

    Spectrometer and image forming apparatus having the same
    46.
    发明授权
    Spectrometer and image forming apparatus having the same 有权
    光谱仪和具有该光谱仪的图像形成装置

    公开(公告)号:US09217667B2

    公开(公告)日:2015-12-22

    申请号:US13845578

    申请日:2013-03-18

    Abstract: There is provided is a spectrometer having a concave reflection type diffraction element, wherein, among surfaces other than a diffraction surface of the diffraction element, non-diffraction surfaces which are located outside the diffraction surface at the same side as the diffraction surface are a glossy surface, the spectrometer includes a light detection unit which is located at an imaging position of a first-order diffracted light diffracted by the diffraction element to receive the first-order diffracted light, and the light detection unit is disposed inside optical paths of light beams regularly reflected on the non-diffraction surfaces outside the diffraction surface. Accordingly, it is possible to effectively suppress a stray light reflected on the surfaces other the diffraction surface from being incident into the light detection unit and to detect the light spectrally diffracted by the diffraction surface at high accuracy.

    Abstract translation: 提供了具有凹面反射型衍射元件的光谱仪,其中除了衍射元件的衍射面以外的表面中,位于与衍射面同侧的衍射面外侧的非衍射面为光泽 光谱仪包括光检测单元,其位于由衍射元件衍射的一级衍射光的成像位置以接收一级衍射光,并且光检测单元设置在光束的光路内 经常在衍射表面外的非衍射表面反射。 因此,能够有效地抑制在其他衍射面的表面上反射的杂散光入射到光检测单元中,并以高精度检测由衍射面衍射的光。

    Curved Grating Spectrometer and Wavelength Multiplexer or Demultiplexer with Very High Wavelength Resolution
    47.
    发明申请
    Curved Grating Spectrometer and Wavelength Multiplexer or Demultiplexer with Very High Wavelength Resolution 有权
    曲线光栅光谱仪和具有非常高波长分辨率的波分复用器或解复用器

    公开(公告)号:US20150070697A1

    公开(公告)日:2015-03-12

    申请号:US14482615

    申请日:2014-09-10

    Applicant: OptoNet, Inc.

    Abstract: The present application discloses a system comprising a compact curved grating (CCG) and its associated compact curved grating spectrometer (CCGS) or compact curved grating wavelength multiplexer/demultiplexer (WMDM) module and a method for making the same. The system is capable of achieving a very small (resolution vs. size) RS factor. The location of the entrance slit and detector can be adjusted in order to have the best performance for a particular design goal. The initial groove spacing is calculated using a prescribed formula dependent on operation wavelength. The location of the grooves is calculated based on two conditions. The first one being that the path-difference between adjacent grooves should be an integral multiple of the wavelength in the medium to achieve aberration-free grating focusing at the detector or a first anchor output slit even with large beam diffraction angle from the entrance slit or input slit, the second one being specific for a particular design goal of a curved-grating spectrometer.

    Abstract translation: 本申请公开了一种包括紧凑弯曲光栅(CCG)及其相关联的紧凑弯曲光栅光谱仪(CCGS)或紧凑弯曲光栅波长多路复用器/解复用器(WMDM)模块的系统及其制造方法。 该系统能够实现非常小的(分辨率vs.尺寸)RS因子。 可以调整入口狭缝和检测器的位置,以便为特定设计目标获得最佳性能。 使用取决于工作波长的规定公式计算初始槽间距。 基于两个条件计算凹槽的位置。 第一个是相邻凹槽之间的路径差应该是介质中的波长的整数倍,以便在检测器或第一锚定输出狭缝处聚焦的无像差光栅,即使具有来自入射狭缝的大的光束衍射角或 输入狭缝,第二个特定于弯曲光栅光谱仪的特定设计目标。

    Curved grating spectrometer and wavelength multiplexer or demultiplexer with very high wavelength resolution
    48.
    发明授权
    Curved grating spectrometer and wavelength multiplexer or demultiplexer with very high wavelength resolution 有权
    弯曲光栅光谱仪和具有非常高波长分辨率的波长多路复用器或解复用器

    公开(公告)号:US08854620B2

    公开(公告)日:2014-10-07

    申请号:US13911847

    申请日:2013-06-06

    Applicant: Seng-Tiong Ho

    Abstract: The present application discloses a system comprising a compact curved grating (CCG) and its associated compact curved grating spectrometer (CCGS) or compact curved grating wavelength multiplexer/demultiplexer (WMDM) module and a method for making the same. The system is capable of achieving a very small (resolution vs. size) RS factor. In the invention, the location of the entrance slit and detector can be adjusted in order to have the best performance for a particular design goal. The initial groove spacing is calculated using a prescribed formula dependent on operation wavelength. The location of the grooves is calculated based on two conditions. The first one being that the path-difference between adjacent grooves should be an integral multiple of the wavelength in the medium to achieve aberration-free grating focusing at the detector or output slit (or output waveguide) even with large beam diffraction angle from the entrance slit or input slit (or input waveguide). The second one being specific for a particular design goal of a curved-grating spectrometer. In an embodiment, elliptical mirrors each with focal points at the slit and detector are used for each groove to obtain aberration-free curved mirrors.

    Abstract translation: 本申请公开了一种包括紧凑弯曲光栅(CCG)及其相关联的紧凑弯曲光栅光谱仪(CCGS)或紧凑弯曲光栅波长多路复用器/解复用器(WMDM)模块的系统及其制造方法。 该系统能够实现非常小的(分辨率vs.尺寸)RS因子。 在本发明中,可以调整入口狭缝和检测器的位置,以便为特定设计目标具有最佳性能。 使用取决于工作波长的规定公式计算初始槽间距。 基于两个条件计算凹槽的位置。 第一个是相邻槽之间的路径差应该是介质中的波长的整数倍,以便即使在入口处具有大的光束衍射角,也可以在检测器或输出狭缝(或输出波导)处聚焦的无像差光栅 狭缝或输入狭缝(或输入波导)。 第二个特定于曲面光栅光谱仪的特定设计目标。 在一个实施例中,每个具有狭缝和检测器处的​​焦点的椭圆镜用于每个凹槽,以获得无像差的曲面镜。

    OPTICAL MODULE OF MICRO SPECTROMETER WITH TAPERED SLIT AND SLIT STRUCTURE THEREOF
    49.
    发明申请
    OPTICAL MODULE OF MICRO SPECTROMETER WITH TAPERED SLIT AND SLIT STRUCTURE THEREOF 有权
    微型光谱仪的光学模块,带有切片和其结构

    公开(公告)号:US20140002820A1

    公开(公告)日:2014-01-02

    申请号:US13642828

    申请日:2010-04-29

    Applicant: Cheng-Hao Ko

    Inventor: Cheng-Hao Ko

    Abstract: An optical module of a micro spectrometer with tapered slit and slit structure thereof. The optical module includes an input section and a micro diffraction grating. The input section includes a slit structure, which receives a first optical signal and outputs a second optical signal travelling along a first optical path. The slit structure includes a substrate and a slit, which penetrates through the substrate and has a gradually reduced dimension from a first surface of the substrate to a second surface of the substrate. The micro diffraction grating, disposed on the first optical path, receives the second optical signal and separates the second optical signal into a plurality of spectrum components travelling along a second optical path. The optical module of the micro spectrometer with the tapered slit and slit structure thereof according to the embodiment of the invention can be manufactured in a mass-production manner using the semiconductor manufacturing processes, so that the cost can be decreased, and the slit can have a smooth surface, which avoids the negative effect on the incident light.

    Abstract translation: 具有锥形狭缝和狭缝结构的微光谱仪的光学模块。 光学模块包括输入部分和微衍射光栅。 所述输入部分包括狭缝结构,其接收第一光信号并输出​​沿着第一光路行进的第二光信号。 狭缝结构包括基板和狭缝,其穿透基板并且具有从基板的第一表面到基板的第二表面的逐渐减小的尺寸。 设置在第一光路上的微衍射光栅接收第二光信号,并将第二光信号分离成沿着第二光路行进的多个光谱分量。 根据本发明的实施例的具有锥形狭缝和狭缝结构的微光谱仪的光学模块可以使用半导体制造工艺以批量生产方式制造,从而可以降低成本,并且狭缝可以具有 光滑的表面,避免了对入射光的负面影响。

    Spectral colorimetric apparatus and image forming apparatus using the same
    50.
    发明授权
    Spectral colorimetric apparatus and image forming apparatus using the same 有权
    光谱比色仪及使用其的成像装置

    公开(公告)号:US08462406B2

    公开(公告)日:2013-06-11

    申请号:US12769247

    申请日:2010-04-28

    Abstract: A spectral colorimetric apparatus for detecting a color of an image of a subject, including: an illumination optical system illuminating the subject on a detection surface; a spectral optical system including a spectral element spectrally separating the beam diffused by the subject and a light receiving element array detecting a spectral intensity distribution; and a guiding optical system for guiding a beam diffused by the subject, wherein: the detection surface is parallel to a spectral plane including a principal ray of a beam entering the spectral optical system and a principal ray of a beam spectrally separated; the principal ray of the beam enters the spectral optical system within the spectral plane obliquely to a line joining a center of the light receiving element array with a surface vertex of the spectral element; and a light receiving surface of the light receiving element array is orthogonal to the spectral plane.

    Abstract translation: 一种用于检测被摄体的图像的颜色的光谱比色装置,包括:照射光学系统,在检测面上照射被摄体; 光谱光学系统,包括频谱分离由对象漫射的光束的光谱元件和检测光谱强度分布的光接收元件阵列; 以及引导光学系统,用于引导被对象漫射的光束,其中:所述检测表面平行于包括进入所述光谱系统的光束的主光线和光谱分离的光束的主光束的光谱平面; 光束的主射线进入光谱平面内的光谱系统,倾斜于连接光接收元件阵列的中心与光谱元件的表面顶点的线; 并且光接收元件阵列的光接收表面与光谱平面正交。

Patent Agency Ranking