Abstract:
A spectrometer includes an input unit for receiving an optical signal, a diffraction grating disposed on the transmission path of the optical signal for dispersing the optical signal into a plurality of spectral rays, an image sensor disposed on the transmission path of at least a portion of the spectral rays, and a waveguide device. A waveguide space is formed between the first and second reflective surfaces of the waveguide device. The optical signal is transmitted from the input unit to the diffraction grating via the waveguide space. The portion of the spectral rays is transmitted to the image sensor via the waveguide space. At least one opening is formed on the waveguide device, and is substantially parallel to the first and/or second reflective surface. A portion of the spectral rays and/or the optical signal diffuses from the opening out of the waveguide space without reaching the image sensor.
Abstract:
An optical module of a micro spectrometer with tapered slit and slit structure thereof. The optical module includes an input section and a micro diffraction grating. The input section includes a slit structure, which receives a first optical signal and outputs a second optical signal travelling along a first optical path. The slit structure includes a substrate and a slit, which penetrates through the substrate and has a gradually reduced dimension from a first surface of the substrate to a second surface of the substrate. The micro diffraction grating, disposed on the first optical path, receives the second optical signal and separates the second optical signal into a plurality of spectrum components travelling along a second optical path. The optical module of the micro spectrometer with the tapered slit and slit structure thereof according to the embodiment of the invention can be manufactured in a mass-production manner using the semiconductor manufacturing processes, so that the cost can be decreased, and the slit can have a smooth surface, which avoids the negative effect on the incident light.
Abstract:
There is provided is a spectrometer having a concave reflection type diffraction element, wherein, among surfaces other than a diffraction surface of the diffraction element, non-diffraction surfaces which are located outside the diffraction surface at the same side as the diffraction surface are a glossy surface, the spectrometer includes a light detection unit which is located at an imaging position of a first-order diffracted light diffracted by the diffraction element to receive the first-order diffracted light, and the light detection unit is disposed inside optical paths of light beams regularly reflected on the non-diffraction surfaces outside the diffraction surface. Accordingly, it is possible to effectively suppress a stray light reflected on the surfaces other the diffraction surface from being incident into the light detection unit and to detect the light spectrally diffracted by the diffraction surface at high accuracy.
Abstract:
The present application discloses a system comprising a compact curved grating (CCG) and its associated compact curved grating spectrometer (CCGS) or compact curved grating wavelength multiplexer/demultiplexer (WMDM) module and a method for making the same. The system is capable of achieving a very small (resolution vs. size) RS factor. The location of the entrance slit and detector can be adjusted in order to have the best performance for a particular design goal. The initial groove spacing is calculated using a prescribed formula dependent on operation wavelength. The location of the grooves is calculated based on two conditions. The first one being that the path-difference between adjacent grooves should be an integral multiple of the wavelength in the medium to achieve aberration-free grating focusing at the detector or a first anchor output slit even with large beam diffraction angle from the entrance slit or input slit, the second one being specific for a particular design goal of a curved-grating spectrometer.
Abstract:
The present application discloses a system comprising a compact curved grating (CCG) and its associated compact curved grating spectrometer (CCGS) or compact curved grating wavelength multiplexer/demultiplexer (WMDM) module and a method for making the same. The system is capable of achieving a very small (resolution vs. size) RS factor. In the invention, the location of the entrance slit and detector can be adjusted in order to have the best performance for a particular design goal. The initial groove spacing is calculated using a prescribed formula dependent on operation wavelength. The location of the grooves is calculated based on two conditions. The first one being that the path-difference between adjacent grooves should be an integral multiple of the wavelength in the medium to achieve aberration-free grating focusing at the detector or output slit (or output waveguide) even with large beam diffraction angle from the entrance slit or input slit (or input waveguide). The second one being specific for a particular design goal of a curved-grating spectrometer. In an embodiment, elliptical mirrors each with focal points at the slit and detector are used for each groove to obtain aberration-free curved mirrors.
Abstract:
An optical module of a micro spectrometer with tapered slit and slit structure thereof. The optical module includes an input section and a micro diffraction grating. The input section includes a slit structure, which receives a first optical signal and outputs a second optical signal travelling along a first optical path. The slit structure includes a substrate and a slit, which penetrates through the substrate and has a gradually reduced dimension from a first surface of the substrate to a second surface of the substrate. The micro diffraction grating, disposed on the first optical path, receives the second optical signal and separates the second optical signal into a plurality of spectrum components travelling along a second optical path. The optical module of the micro spectrometer with the tapered slit and slit structure thereof according to the embodiment of the invention can be manufactured in a mass-production manner using the semiconductor manufacturing processes, so that the cost can be decreased, and the slit can have a smooth surface, which avoids the negative effect on the incident light.
Abstract:
A spectral colorimetric apparatus for detecting a color of an image of a subject, including: an illumination optical system illuminating the subject on a detection surface; a spectral optical system including a spectral element spectrally separating the beam diffused by the subject and a light receiving element array detecting a spectral intensity distribution; and a guiding optical system for guiding a beam diffused by the subject, wherein: the detection surface is parallel to a spectral plane including a principal ray of a beam entering the spectral optical system and a principal ray of a beam spectrally separated; the principal ray of the beam enters the spectral optical system within the spectral plane obliquely to a line joining a center of the light receiving element array with a surface vertex of the spectral element; and a light receiving surface of the light receiving element array is orthogonal to the spectral plane.