Abstract:
This charged particle beam device irradiates a primary charged particle beam generated from a charged particle microscope onto a sample arranged on a light-emitting member that makes up at least a part of a sample base, and, in addition to obtaining charged particle microscope images by the light-emitting member detecting charged particles transmitted through or scattered inside the sample, obtains optical microscope images by means of an optical microscope while the sample is still arranged on the sample platform.
Abstract:
An electronic microscope includes a carrier, a first driving unit, a flow-buffer unit and an electron source. The carrier carries a sample. The first driving unit drives a first fluid to flow along a first flow path, wherein the first flow path passes through the sample. The flow-buffer unit is disposed on the first flow path to perform buffering on the first fluid, wherein the first fluid flows through the flow-buffer unit and the carrier in sequence. The electron source provides an electron beam to the sample.
Abstract:
In one aspect, the present invention relates to a microfluidic chamber. In one embodiment, the microfluidic chamber has a first sub-chamber and at least one second sub-chamber. The first sub-chamber has a first window and a second window. Both the first window and the second window are transparent to electrons of certain energies. The second window is positioned substantially parallel and opposite to the first window defining a first volume therebetween. The first window and the second window are separated by a distance that is sufficiently small such that an electron beam that enters from the first window can propagate through the first sub-chamber and exit from the second window. The at least one second sub-chamber is in fluid communication with the first sub-chamber and has a second volume that is greater than the first volume of the first sub-chamber.
Abstract:
A charged particle beam device provided with: a charged particle optical lens column generating a primary charged particle beam; a housing which has its inside evacuated by a vacuum pump; a first diaphragm that forms a part of the housing and able to keep an airtight state of the interior space of the housing; and a second diaphragm disposed between the first diaphragm and the sample, wherein a primary charged particle beam generated by the charged particle optical lens column is transmitted by or passes through the first diaphragm and the second diaphragm, and then is irradiated, on the sample that is in contact with the second diaphragm.
Abstract:
A flow cell is provided for the analysis and/or microscopy of liquid or gas samples on the nanometer to micron scale. The flow cell preferably includes a thin membrane that is transparent to electrons and/or photons, thereby enabling the penetration of electrons or photons into a liquid flowing through the cell. Trenches are provided on either side of the membrane, which advantageously minimize fluidic resistance outside of the window area of the cell and also enable a faster response time in response to changes in external fluidic pressure. This feature enables active feedback using pathlength sensitive probes to stabilize the fluid flow to thin streams from nanometer to micron scale thicknesses with nanometer precision.
Abstract:
A 4D electron tomography system includes a stage having one or more degrees of freedom, an electron source, and electron optics operable to direct electron pulses to impinge on a sample supported on the stage. A pulse of the electron pulses impinges on the sample at a first time. The system also includes a laser system and optics operable to direct optical pulses to impinge on the sample. A pulse of the optical pulses impinges on the sample at a second time. The system further includes a detector operable to receive the electron pulses passing through the sample, a controller operable to independently modify an orientation of the stage and at least one of the first time or the second time, a memory operable to store sets of images, and a processor operable to form a 4D tomgraphic image set from the sets of images.
Abstract:
An electron microscope method for inspecting a liquid specimen and a reagent solution therefor. A culture medium and biological cells are put in the sample holder. A plugging agent is mixed into the liquid sample. The cells can be irradiated with a primary beam via a film. An image of the cells or information about the cells is obtained by detecting a resulting secondary signal. If the film is destroyed, the plugging agent plugs up the damaged portion of the film. Consequently, liquid leakage can be minimized.
Abstract:
A reusable sample-holding device for readily loading very small wet samples for observation of the samples by microscopic equipment, in particular in a vacuum environment. Embodiments may be used with a scanning electron microscope (SEM), a transmission electron microscope (TEM), an X-ray microscope, optical microscope, and the like. For observation of the sample, embodiments provide a thin-membrane window etched in the center of each of two silicon wafers abutting to contain the sample in a small uniform gap formed between the windows. This gap may be adjusted by employing spacers. Alternatively, the thickness of a film established by the fluid in which the sample is incorporated determines the gap without need of a spacer. To optimize resolution each window may have a thickness on the order of 50 nm and the gap may be on the order of 50 nm.
Abstract:
A specimen holder, a specimen inspection apparatus, and a specimen inspection method permitting a specimen consisting of cultured cells to be observed or inspected. Also, a method of fabricating the holder is offered. The holder has an open specimen-holding surface. At least a part of this surface is formed by a film. A specimen cultured on the specimen-holding surface of the film can be irradiated via the film with a primary beam for observation or inspection of the specimen. Consequently, the cultured specimen (e.g., cells) can be observed or inspected in vitro. Especially, if an electron beam is used as the primary beam, the specimen in vitro can be observed or inspected by SEM. Because the specimen-holding surface is open, a manipulator can gain access to the specimen. A stimulus can be given to the specimen using the manipulator. The reaction can be observed or inspected.
Abstract:
The present invention relates to a cryo-charging specimen holder for the electron microscope, particularly to a cryo-charging specimen holder for the electron microscope to hold various biological materials. The major feature of the invention is to charge the biological specimen and freeze the specimen at low temperature. The ice around the biological sample is also doped, so that after charging the doped ice surrounding the sample has a conductivity level comparable to that of conductor. Therefore, the sample can be embedded by the doped and charged ice obtaining the property of conductor, in order to be observed by the electron microscope.