Abstract:
A printed circuit board having a dielectric layer is disclosed. At least one signal trace is disposed adjacent a first surface of the dielectric layer in a first signal area. A reference plane is disposed adjacent a second surface of the dielectric layer in a first reference area positioned opposite the first signal area. The reference plane is configured to carry a reference potential for signals on the signal trace. At least one other signal trace is disposed adjacent the second surface of the dielectric layer in a second signal area and coupled to the signal trace in said first signal area. A second reference plane is disposed adjacent the first surface of the first dielectric layer in a second reference area positioned opposite the second signal area. The second reference plane is configured to carry the reference potential for signals on the other signal trace.
Abstract:
A telecommunications device including a plurality of splitter cards mounted in a chassis, a circuit board, and plurality of card edge connectors for providing electrical connections between the splitter cards and the circuit board, and POTS, LINE, and DATA connectors. The circuit board includes three layers, each layer having tracings that electrically connect at least one POTS, LINE, or DATA connector to at least one of the card edge connector. A center layer includes a grounding plane that is adapted to reduce cross-talk between tracings on a top layer and tracings on a bottom layer. The grounding plane is co-planar with tracings on the center layer such that the grounding plane adds additional thickness to the center layer.
Abstract:
A multi-layered printed wiring board capable of securing required wiring density even with a decreased number of wiring layers and reducing radiation noises. The multi-layered printed wiring board has at least three wiring layers each at least having at least one power supply line or a ground line, and another kind of line, said wiring layers each having an outer edge. A ground line is formed at the outer edge of at least one of the wiring layers. A basic power supply line is formed inside the ground line. At least one power supply line extends from the basic power supply line. A plurality of electronic parts are mounted on at least one of the wiring layers. The at least one power supply line is wired to mounting positions of the electronic parts via at least one of the wiring layers.
Abstract:
A coupling adjusting structure for a double-tuned circuit contains first and second coils that are configured such that a pair of first conductive patterns formed on a first surface of a printed circuit and a corresponding pair of second conductive patterns formed on a second surface of the printed circuit board are connected via corresponding connecting conductors. One end of the first coil and the corresponding end of the second coil are disposed close to each other. A first ground conductive pattern is disposed at least on the first surface of the printed circuit. A first jumper connected to the first ground conductive pattern is disposed between the first and second coils to adjust an inductive coupling of the double-tuned circuit.
Abstract:
To manufacture a printed wiring board, the positions and shapes of several slits to satisfy UL796 standard, etc., formed in a ground or power supply plane are determined so that each slit is formed in a section corresponding to a ground guard in a portion containing a signal line and a signal line gap.
Abstract:
A high-frequency circuit comprises a substrate having an electronic component on an obverse side thereof, a first ground pattern formed on almost an entire reverse side of the substrate, a microstrip line formed on the obverse side of the substrate, and a bias line connected to the electronic component on the obverse side of the substrate and formed continuously on the obverse side and the reverse side of the substrate so as to cross the microstrip line on the reverse side of the substrate in plan view so as to supply a bias voltage to the electronic component, wherein the first ground pattern is formed so as to circumvent the bias line formed on the reverse side of the substrate, a portion of the first ground pattern that circumvents the bias line on the reverse side of the substrate is continuously formed on the obverse side of the substrate as a second ground pattern so as to divide the microstrip line in two parts, and a chip jumper is arranged to bridge the two divided parts of the microstrip line over the second ground pattern so as to connect the divided microstrip line electrically.
Abstract:
A center-tap termination circuit which includes two resistors having the same resistance, which are serially connected between forward and return transmission lines, where the forward and return transmission lines constitute a differential signal transmission line. A capacitor is connected between a connector that interconnects the two resistors and a GND of a printed circuit board. The forward and return transmission lines are substantially equidistant from each other along their lengths. The resistors and the capacitor are arranged outside the forward and return transmission lines. The connector is provided intersecting, in three-dimensional space, the forward and return transmission lines, such as being formed by a jumper bridging the two lines, or by being formed on a different layer of a multilayer printed circuit board. Variations in the differential impedance are suppressed, and the transmission return/transmission forward characteristics of differential signals are substantially matched. The differential impedance matching is achieved, and high-quality signal waveforms are maintained. Not only noise emitted due to differential mode current components, but also noise emitted due to common mode current components are suppressed.
Abstract:
A multilayer printed circuit board enables needless electro-magnetic radiation to be suppressed. Interlayer insulation materials are arranged in layer-built constitution between respective layers of a mixed wiring layer of a first signal and/or a power supply wiring, a first ground layer, a second ground layer, and a mixed wiring layer of a second signal and/or a power supply wiring. A through-hole for connecting the ground layers with each other is provided adjacently to a through-hole for connecting the signal and/or the power supply between these layers. According to the constitution, a return circuit current route of the signal and the power supply to the ground layers is secured. As a result, a loop made by the current becomes small, thus needless radiation of electro-magnetic wave is capable of being suppressed.
Abstract:
An insulation layer is formed on a ground layer. The insulation layer includes first and second regions for forming wiring layers. The impedance of a wiring layer formed on the second region is lower than that of a wiring layer formed on the first region. A signal line pattern is formed on the wiring layer on the first region of the insulation layer. A power supply plane is formed on the wiring layer on the second region of the insulation layer in order to feed power to the signal line pattern through a termination resistor connected to the signal line pattern.
Abstract:
A telecommunications device including a plurality of splitter cards mounted in a chassis. The device also includes a circuit board and plurality of card edge connectors for providing electrical connections between the splitter cards and the circuit board. The device further includes POTS connectors, LINE connectors and DATA connectors. The circuit board includes a first layer having first tracings that electrically connect contacts of at least one of the POTS, LINE or DATA connectors to at least one of the card edge connectors; a second layer having second tracings that electrically connect contacts of at least one of the POTS, LINE or DATA connectors to at least one of the card edge connectors; and a third layer having third tracings that electrically connect contacts of at least one of the POTS, LINE or DATA connectors to at least one of the card edge connectors. The second layer is positioned between the first and third layers. A majority of the second layer is covered by a grounding plane. The grounding plane and the second tracings are co-planar such that the grounding plane adds no additional thickness to the second layer. The grounding plane is positioned between the first and third tracings to reduce cross-talk between the first and third tracings.