Abstract:
A display device includes a display panel on which an image is displayed, and a driving board. The driving board includes a substrate, a first multi-layer ceramic condenser disposed on the substrate and to which a first current is supplied, and a second multi-layer ceramic condenser disposed substantially parallel with the first multi-layer ceramic condenser and to which a second current is supplied. The first current and the second current are supplied to the first multi-layer ceramic condenser and the second multi-layer ceramic condenser, respectively, in opposite directions.
Abstract:
Disclosed herein is a device for reducing noise generated by an electrical component, the device including a stiffening component secured to an electrical component, wherein the stiffening component provides rigidity to the electrical component, thereby reducing the mechanical resonance of the electrical component during operation. The electrical component has at least one end face and a flange portion that includes a flange face that extends about a perimeter of the end face. The flange face is substantially parallel to the end face, wherein the stiffening component is secured to the flange face of the electrical component such that it does not extend into a plane of the end face. Further, the stiffening component can include a stiffening portion and a securing portion, wherein the stiffening portion is secured to the flange face of the electrical component by the securing portion. Further, the electrical component can be a power semiconductor device.
Abstract:
According to one embodiment, a carriage assembly includes a carriage block main body, a carriage arm, a head suspension, a flexible printed circuit board, and a viscoelastic adhesive. The carriage block main body is rotatably supported by a shaft. The carriage arm extends from the carriage block main body. The head suspension is attached to an end of the carriage arm, and supports a head slider at an end. The flexible printed circuit board is partially fixed to the head suspension, extends from the head suspension toward the carriage block main body, and is affixed to a surface of the carriage arm. The viscoelastic adhesive is sandwiched between the carriage arm and the flexible printed circuit board.
Abstract:
An electronic element module and an electronic device using the same are provided. The electronic element module includes a circuit board and at least a capacitor. In one embodiment, the circuit board has a plurality of contacts. The capacitor is disposed on the circuit board with a gap therebetween. Besides, the capacitor has a plurality of terminals electrically connected to the contacts correspondingly. The gap is filled with a glue.
Abstract:
An electronic element module and an electronic device using the same are provided. The electronic element module includes a circuit board and a plurality of electronic elements. In one embodiment, the circuit board has a plurality of leg-holes. Each of the electronic elements includes a body and a plurality of legs that connected to the body. Wherein, the bodies of the electronic elements are glued each other, and the legs of the electronic elements are partially plugged in the leg-holes. In another one embodiment, the circuit board has a plurality of contacts. The electronic element is disposed on the circuit board with a gap therebetween. The electronic element has a plurality of terminals that electrically connect to the contacts of the circuit board correspondingly. Otherwise, the gap is filled with glue.
Abstract:
A printed circuit board has an opening, and a multi-layer ceramic capacitor is disposed inside the opening and is coupled to the printed circuit board. The multi layer ceramic capacitor is coupled to the printed circuit board in a manner that a center of gravity of the multi-layer ceramic capacitor is at substantially the same level as a center of gravity of the printed circuit board.
Abstract:
A fixing member is spaced from a head actuator by a predetermined distance. A flexible printed circuit board extends at least from the head actuator to the fixing member. The flexible printed circuit board is superposed on the surface of the fixing member. A viscoelastic layer and a protecting layer are overlaid on the surface of the flexible printed circuit board. A clip clips all the fixing member, the flexible printed circuit board, the viscoelastic layer and the protecting layer together. When a head slider is positioned, the head actuator changes its attitude relative to a recording disk. The inertial force based on the rotation causes the first flexible printed circuit board to vibrate when the actuator block stops rotating. The viscoelastic layer serves to absorb this residual vibration of the first flexible printed circuit board. Vibration of the flexible printed circuit board can be suppressed.
Abstract:
A circuit board damping assembly provides a damping node for a circuit board coupled in spaced relationship to another circuit board or chassis. The circuit board damping assembly includes a chassis or circuit board forming a base member; a circuit board coupled in spaced relationship to the base member; a first attachment member coupled to the base member; a second attachment member coupled to the circuit board; and a connector coupled between the first and second attachment members. The connector may be a wire coupled to the first and second attachment members.
Abstract:
In an electronic component device, electrodes of an electric component and respective wiring lines on a board are collectively bonded together via bumps using ultrasonic vibration. The wiring lines include wiring lines that are substantially parallel to the direction of ultrasonic vibration and wiring lines that are substantially perpendicularly to the direction of ultrasonic vibration. A displacement inhibiting layer is provided inside the board in a portion below the wiring lines that are substantially perpendicular to the direction of ultrasonic vibration.
Abstract:
An integrated lead suspension is formed from a five layer laminate of stainless steel, polyimide and copper. Prior to lamination, the steel layer has preformed voids which may have various configurations. The voids are provided for intentionally weakening high strain flexure areas in the suspension so that strain energy can be dissipated more effectively.