Abstract:
A spectral instrument including a light source configured to produce a light beam, the light beam comprising a plurality of wavelengths, and the light beam being about collimated or pseudo-collimated. The spectral instrument also includes a spectral dispersion device in optical communication with the light source. The spectral instrument also includes a screen disposed in the optical path after the spectral dispersion device. The screen comprises a material configured to be substantially opaque to at least some of the plurality of wavelengths. The screen is sized and dimensioned to at least partially block selected ones of the plurality of wavelengths. The screen is movable with respect to an axis of the screen. The spectral instrument also includes an imaging lens disposed in the optical path and disposed either after the screen or before the screen.
Abstract:
An optical arrangement for spectral decomposition of light is disclosed. In an embodiment the optical arrangement includes a reflection diffraction grating, a first medium with a refractive index nin arranged on a light incidence side of the reflection diffraction grating; and a second medium with a refractive index nG arranged on a side of the reflection diffraction grating that faces away from the light incidence side, with nin>nG, wherein the optical arrangement is configured in such a way that light impinges on the reflection diffraction grating from the first medium at an angle of incidence α, wherein a condition sin(α)>nG/nin is satisfied, wherein the reflection diffraction grating comprises a layer system with at least one unstructured layer and at least one structured layer, wherein the at least one structured layer has a periodic structure with a period p in lateral direction, and wherein the period p meets the following conditions: p λ/[nin*sin(α)+nin].
Abstract:
A wearable device for use with a smart phone or tablet includes LEDs for measuring physiological parameters by modulating the LEDs and generating a near-infrared multi-wavelength optical beam. At least one LED emits at a first wavelength having a first penetration depth and at least another LED emits at a second wavelength having a second penetration depth into tissue. The device includes lenses that deliver the optical beam to the tissue, which reflects the first and second wavelengths. A receiver is configured to capture light while the LEDs are off and while at least one of the LEDs is on and to difference corresponding signals to improve a signal-to-noise ratio of the optical beam reflected from the tissue. The signal-to-noise ratio is further increased by increasing light intensity of at least one of the LEDs. The device generates an output signal representing a non-invasive measurement on blood within the tissue.
Abstract:
The invention relates to a spectrometer comprising a combination of at least one grid (1) and at least one prism (2), characterized in that total reflexion is used to produce a compact spectrometer in at least one prism (2).
Abstract:
The present invention includes a spectroscope for gem identification and a fixing device to connect the spectroscope and an auxiliary image sensor. The functional compartments of the spectroscope concerning the present invention include a tube, an incident window, a slit, lens, a newly designed grism, and an exit window; there are two different kind of fixing device designed to fulfill its purpose, one is a clamp, the other is a shell.
Abstract:
A spectrometer (100) for analyzing the spectrum of an upstream light beam (1) includes an entrance slit (101) and angular dispersing elements (130). The angular dispersing elements include at least one polarization-dependent diffraction grating that is suitable for, at the plurality of wavelengths (1, 2, 3), diffracting a corrected light beam (20) into diffracted light beams (31, 32, 33) in a given particular diffraction order of the polarization-dependent diffraction grating, which is either the +1 diffraction order or the −1 diffraction order, when the corrected light beam has a preset corrected polarization state that is circular; and the spectrometer includes elements for modifying polarization (1100) placed between the entrance slit and the angular dispersion elements, which are suitable for modifying the polarization state of the upstream light beam in order to generate the corrected light beam with a preset corrected polarization state.
Abstract:
Non-invasive monitoring of blood constituents such as glucose, ketones, or hemoglobin A1c may be accomplished using near-infrared or short-wave infrared (SWIR) light sources through absorbance, diffuse reflection, or transmission spectroscopy. As an example, hydro-carbon related substances such as glucose or ketones have distinct spectral features in the SWIR between approximately 1500 and 2500 nm. An SWIR super-continuum laser based on laser diodes and fiber optics may be used as the light source for the non-invasive monitoring. Light may be transmitted or reflected through a tooth, since an intact tooth and its enamel and dentine may be nearly transparent in the SWIR. Blood constituents or analytes within the capillaries in the dental pulp may be detected. The non-invasive monitoring device may communicate with a device such as a smart phone or tablet, which may transmit a signal related to the measurement to the cloud with cloud-based value-added services.
Abstract:
Wavenumber linear spectrometers are provided including an input configured to receive electromagnetic radiation from an external source; collimating optics configured to collimate the received electromagnetic radiation; a dispersive assembly including first and second diffractive gratings, wherein the first diffraction grating is configured in a first dispersive stage to receive the collimated electromagnetic radiation and wherein the dispersive assembly includes at least two dispersive stages configured to disperse the collimated input; and an imaging lens assembly configured to image the electromagnetic radiation dispersed by the at least two dispersive stages onto a linear detection array such that the variation in frequency spacing along the linear detection array is no greater than about 10%.
Abstract:
A system and method for using near-infrared or short-wave infrared (SWIR) sources such as lamps, thermal sources, LED's, laser diodes, super-luminescent laser diodes, and super-continuum light sources for early detection of dental caries measure transmission and/or reflectance. In the SWIR wavelength range, solid, intact teeth may have a low reflectance or high transmission with very few spectral features while a carious region exhibits more scattering, so the reflectance increases in amplitude. The spectral dependence of the transmitted or reflected light from the tooth may be used to detect and quantify the degree of caries. Instruments for applying SWIR light to one or more teeth may include a C-clamp design, a mouth guard design, or hand-held devices that may augment other dental tools. The measurement device may communicate with a smart phone or tablet, which may transmit a related signal to the cloud, where additional value-added services are performed.