Abstract:
A light detection device includes: a Fabry-Perot interference filter provided with a light transmission region; a light detector configured to detect light transmitted through the light transmission region; a package having an opening and accommodating the Fabry-Perot interference filter and the light detector; and a light transmitting unit arranged on an inner surface of the package so as to close an opening, the light transmitting unit including a band pass filter configured to transmit light incident on the light transmission region. When viewed from a direction parallel to the line, an outer edge of the Fabry-Perot interference filter is positioned outside an outer edge of the opening, and an outer edge of the light transmitting unit is positioned outside the outer edge of the Fabry-Perot interference filter.
Abstract:
An electronic device may have a display with a cover layer. An ambient light sensor may be aligned with an ambient light sensor window formed from an opening in a masking layer on the cover layer in an inactive portion of the display. To help mask the ambient light sensor window from view, the ambient light sensor window may be provided with a black coating that matches the appearance of surrounding masking layer material while allowing light to reach the ambient light sensor. The black coating may be formed from a black physical vapor deposition thin-film inorganic layer with a high index of refraction. An antireflection layer formed from a stack of dielectric layers may be interposed between the black thin-film inorganic layer and the display cover layer.
Abstract:
An apparatus for obtaining an image of a tooth having at least one light source providing incident light having a first spectral range for obtaining a reflectance image from the tooth and a second spectral range for exciting a fluorescence image from the tooth. A polarizing beamsplitter in the path of the incident light from both sources directs light having a first polarization state toward the tooth and directs light from the tooth having a second polarization state along a return path toward a sensor, wherein the second polarization state is orthogonal to the first polarization state. A first lens in the return path directs image-bearing light from the tooth toward the sensor, and obtains image data from the portion of the light having the second polarization state. A long-pass filter in the return path attenuates light in the second spectral range.
Abstract:
In the present invention, without decreasing measurement accuracy, a biological component information measurement device can have a miniaturized device structure. In a biological component information measurement device (100), a sample container (104) accommodates a measurement target (105) such as blood, cultured cells, or urine, and a light from a light source (101) is separated into spectral components using a rotating diffraction grating (110) and caused to be incident on the measurement target (105). Due to this configuration, it is possible to reduce the number of parts of a spectral optical system and the amount of space required therefor. As a result, it is possible to, in particular, miniaturize the spectral optical system without decreasing measurement accuracy.
Abstract:
A plurality of photodiodes arrayed in a one-dimensional form are divided into a plurality of groups. The structure of an antireflection coating is changed for each group so that all the surfaces of the photodiodes belonging to each group are covered with an antireflection coating having a transmittance characteristic which shows a maximum transmittance within a range of wavelengths of light to be received by those photodiodes. In particular, a SiO2 coating layer on the silicon substrate and an Al2O3 coating layer are common to all the photodiodes, while the structure of the upper layers are modified with respect to the wavelength. Within an ultraviolet wavelength region, the coating structure is more finely changed with respect to the wavelength. By such a design, the transmittance can be improved while making the best efforts to avoid a complex manufacturing process.
Abstract:
Disclosed herein is a measuring probe, an apparatus, and a method for infrared spectroscopy. In some embodiments the measuring probe may have an elongated form with a first end for coupling and decoupling infrared light into and out of the measuring probe and a second end. In other embodiments, the measuring probe may comprise an attenuated total reflection (ATR) prism arranged at the second end of the measuring probe. The ATR prism may include at least a first surface having at least one measuring portion configured to be brought in optical contact with a measured object. The ATR prism may include at least a second surface having at least one reflective portion. In some embodiments, the ATR prism may include a cutting portion for cutting through the measured object.
Abstract:
A spectral camera includes a wavelength variable interference filter, an imaging unit having a plurality of light receiving elements arranged in a two-dimensional array configuration, and a wavelength acquisition unit which acquires center wavelengths of light beams received by the light receiving elements in accordance with signal values output from the light receiving elements when reference light is received by the imaging unit. Light amounts of the reference light corresponding to different wavelength components in a certain wavelength range are uniform in a plane, and different signal values are acquired when light beams of the different wavelength components are received by the light receiving elements.
Abstract:
An apparatus for obtaining an image of a tooth having at least one light source providing incident light having a first spectral range for obtaining a reflectance image from the tooth and a second spectral range for exciting a fluorescence image from the tooth. A polarizing beamsplitter in the path of the incident light from both sources directs light having a first polarization state toward the tooth and directs light from the tooth having a second polarization state along a return path toward a sensor, wherein the second polarization state is orthogonal to the first polarization state. A first lens in the return path directs image-bearing light from the tooth toward the sensor, and obtains image data from the portion of the light having the second polarization state. A long-pass filter in the return path attenuates light in the second spectral range.
Abstract:
A plurality of photodiodes arrayed in a one-dimensional form are divided into a plurality of groups. The structure of an antireflection coating is changed for each group so that all the surfaces of the photodiodes belonging to each group are covered with an antireflection coating having a transmittance characteristic which shows a maximum transmittance within a range of wavelengths of light to be received by those photodiodes. In particular, a SiO2 coating layer on the silicon substrate and an Al2O3 coating layer are common to all the photodiodes, while the structure of the upper layers are modified with respect to the wavelength. Within an ultraviolet wavelength region, the coating structure is more finely changed with respect to the wavelength. By such a design, the transmittance can be improved while making the best efforts to avoid a complex manufacturing process.