Abstract:
A method and system for connecting a vertical printed circuit board with a horizontal printed circuit board where a contact device is biased in a first position when not contacting a vertical printed circuit board and is biased in a second position when the vertical printed circuit is coupled to the horizontal printed circuit board.
Abstract:
A communication jack has a housing with a face having a plug receiving aperture. A plurality of conductive path pairs extends from corresponding plug interface contacts located at the plug receiving aperture to corresponding output terminals. A first circuit board is connected to the plug interface contacts and a second circuit board is connected to the plug interface contacts and the output terminals. The first circuit board has a first single stage of crosstalk compensation with opposite polarity of the crosstalk of a plug for a first combination of the conductive path pairs. The second circuit board includes a second single stage of opposite polarity crosstalk compensation for some of the conductive path pairs not compensated on the first circuit board. The stages cancel substantially all of the crosstalk caused by the plug, for the signal operating frequencies, for corresponding combinations of the conductive path pairs.
Abstract:
A card (1) to be mechanically connected with a socket (21,22,23,24,25) of an interface bus of a type selectable from among a plurality of bus widths. The card (1) includes an electrical connection portion (150) to be electrically connected with the socket of the interface bus, and a connection reinforcing portion (170) to reinforce a mechanical connection with the socket of the interface bus, wherein the connection reinforcing portion (170) is at least partially removable.
Abstract:
A communication jack has a housing with a face having a plug receiving aperture. A plurality of conductive path pairs extends from corresponding plug interface contacts located at the plug receiving aperture to corresponding output terminals. A first circuit board is connected to the plug interface contacts and a second circuit board is connected to the plug interface contacts and the output terminals. The first circuit board has a first single stage of crosstalk compensation with opposite polarity of the crosstalk of a plug for a first combination of the conductive path pairs. The second circuit board includes a second single stage of opposite polarity crosstalk compensation for some of the conductive path pairs not compensated on the first circuit board. The stages cancel substantially all of the crosstalk caused by the plug, for the signal operating frequencies, for corresponding combinations of the conductive path pairs.
Abstract:
According to one embodiment, an electronic apparatus includes a housing, a circuit board accommodated in the hosing and including a first surface and a second surface located on an opposite side to the first surface, a flexible printed wiring board having an elasticity, electrically connected to the circuit board and provided from the first surface of the circuit board over to the second surface, and a pressing portion formed from a part of the flexible printed wiring board as it is bent, and pressing the flexible printed wiring board towards the first surface as it is brought into contact with the inner surface of the housing, which opposes the first surface of the circuit board.
Abstract:
A circuit board arrangement includes a first printed circuit board having a first edge connector, and a second printed circuit board having a second edge connector and a plurality of holes positioned in relation to the second edge connector. A pair of circuit board carriers mount the first printed circuit board generally perpendicular to the second printed circuit board. Each circuit board carrier is positioned at an opposite lateral edge of the first printed circuit board. Each circuit board carrier includes a flat base for abutting the second circuit board, and a pair of wings on laterally opposite sides of the base. Each wing includes a snap-in feature for snap engagement with a corresponding hole in the second circuit board. At least one slot guide retains a corresponding lateral edge of the first printed circuit board. A retainer at an end generally opposite the base retains a distal edge of the first printed circuit board.
Abstract:
According to one embodiment, an electronic apparatus includes a housing, a circuit board accommodated in the hosing and including a first surface and a second surface located on an opposite side to the first surface, a flexible printed wiring board having an elasticity, electrically connected to the circuit board and provided from the first surface of the circuit board over to the second surface, and a pressing portion formed from a part of the flexible printed wiring board as it is bent, and pressing the flexible printed wiring board towards the first surface as it is brought into contact with the inner surface of the housing, which opposes the first surface of the circuit board.
Abstract:
The probe with printed tip consists of a substrate having a plurality of probe tips connected to its end edge, a plurality of test paths, each connected to one of the probe tips and extending along the substrate, and at least one of the test paths including an electrical component adjacent to the test path's probe tip. The electrical component may be a resistor. The probe tips may have a width equal to the thickness of the substrate. The probe tips may consist of a plurality of probe tip layers. The invention also includes a method of probing signals transmitted over target transmission lines on a target board. The disclosure also includes a method of manufacturing the claimed invention.
Abstract:
An assembly comprises a flex circuit including a first set of electrical contacts on a first side of the flex circuit and a compliant support backing adjacent a second side of the flex circuit and opposite the set of electrical contacts. The first set of electrical contacts is configured to connect to a second set of electrical contacts on an electronic component. The compliant support backing includes a set of support elements that individually support the first set of electrical contacts to increase the contact pressure between the first set of electrical contacts and the second set of electrical contacts when the flex circuit is connected to the electronic component. Embodiments may provide robust electrical contracts which provide a reliable connection useful for testing electronic components, such as head gimbal assemblies.
Abstract:
A flexible substrate is connectable to electrodes of an external member. The flexible substrate includes a base material having flexibility and including an insulative base film and a conductive film. Lead parts are arranged on an end of the base material. Slits are formed between the lead parts.