Abstract:
An interconnect structure includes a first conductor, a second conductor, a dielectric block, a substrate, and a pair of conductive lines. The first conductor and the second conductor form a differential pair design. The dielectric block surrounds the first conductor and the second conductor. The first conductor is separated from the second conductor by the dielectric block. The substrate surrounds the dielectric block and is spaced apart from the first conductor and the second conductor. The pair of conductive lines is connected to the first conductor and the second conductor, respectively, and extends along a top surface of the dielectric block and a top surface of the substrate.
Abstract:
A method and structure are provided for implementing enhanced via creation without creating a via barrel stub. The need to backdrill during printed circuit board (PCB) manufacturing is eliminated. After the vias have been drilled, but before plating, a via plug with a specialized geometry and including a capillary is inserted into each via to allow electroplating on only preferred wall surfaces of the vias. Then a board plating process of the PCB manufacturing is performed.
Abstract:
A selective segment via plating process for manufacturing a circuit board selectively interconnects inner conductive layers as separate segments within the same via. Plating resist is plugged into an inner core through hole and then stripped off after an electroless plating process. Stripping of the electroless plating on the plating resist results in a plating discontinuity on the via wall. In a subsequent electroplating process, the inner core layer can not be plated due to the plating discontinuity. The resulting circuit board structure has separate electrically interconnected segments within the via.
Abstract:
According to exemplary embodiments, a tapered surface interconnect is formed on a printed circuit board (PCB). A compliant pin of an electrical connector may be coupled to the tapered surface interconnect and soldered thereto. The surface interconnect may be formed by drilling through one or more layers of the PCB. The depth of the surface interconnect may be shorter than a height or a thickness of the PCB. The surface interconnect may have a tapered side wall to allow for a better fit with a tapered compliant pin. The inclination of the side wall of the surface interconnect may be linear or concave. The intersection between the tapered sidewall and the bottom of the surface interconnect may be rounded to minimize pin insertion issues and may allow for easier solder flux evacuation. The compliant pin may be soldered into place upon being coupled to the tapered surface interconnect.
Abstract:
Interposers and methods of making the same are disclosed herein. In one embodiment, an interposer includes a region having first and second oppositely facing surfaces and a plurality of pores, each pore extending in a first direction from the first surface towards the second surface, wherein alumina extends along a wall of each pore; a plurality of electrically conductive connection elements extending in the first direction, consisting essentially of aluminum and being electrically isolated from one another by at least the alumina; a first conductive path provided at the first surface for connection with a first component external to the interposer; and a second conductive path provided at the second surface for connection with a second component external to the interposer, wherein the first and second conductive paths are electrically connected through at least some of the connection elements.
Abstract:
A package structure includes a circuit substrate, at least one electronic component, and a connecting slot. The circuit substrate includes at least one core layer, a build-up structure including at least three patterned circuit layers, at least two dielectric layers and conductive through holes, and circuit pads. The electronic component is embedded in at least one of the dielectric layers and located in a disposition area. The electronic component is electrically connected to one of the patterned circuit layers through a portion of the conductive through holes. The connecting slot has a bottom portion, a plurality of sidewall portions connecting the bottom portion, and a plurality of connecting pads located on the sidewall portions. The circuit substrate is assembled to the bottom portion, and the circuit pads are electrically connected to the connecting pads through a bent area of the core layer that is bent relative to the disposition area.
Abstract:
A multilayer wiring board includes a first metal foil wiring layer that has at least two or more layers of metal foil wiring lines and is arranged on a mounting surface side for mounting a surface mount type component, a wire wiring layer that is arranged on an opposite side of the mounting surface, and in which an insulation coating wire is wired, and a first interlayer conduction hole that has a conduction part which electrically connects the metal foil wiring line positioned on a surface of the first metal foil wiring layer to at least one of the metal foil wiring line in an inner layer of the first metal foil wiring layer and the insulation coating wire of the wire wiring layer. A hole diameter of the first interlayer conduction hole varies in a board thickness direction of the multilayer wiring board.
Abstract:
A circuit board includes: a first surface and a second surface opposite to the first surface; a through hole extending between the first surface and the second surface; a conductor covering an inner wall surface of the through hole, a first end and a second end of the conductor being terminated inside the through hole; and a wire connected to the conductor, wherein a sum of a length from a contact portion where the conductor contacts a connector pin inserted in the through hole to the first end of the conductor, and a length from a wire connecting portion where the conductor is connected to the wire to the second end of the conductor is 0.5 mm or less.
Abstract:
A wiring board includes multiple insulating layers including first, second, third, fourth and fifth insulation layers laminated in the order of the first, second, third, fourth and fifth insulation layers. The first insulation layer has a first conductor including plating, the second insulation layer has a second conductor including plating, the third insulation layer has a third conductor including conductive paste, the fourth insulation layer has a fourth conductor including plating, the fifth insulation layer has a fifth conductor including plating, and the first conductor, the second conductor, the third conductor, the fourth conductor and the fifth conductor are formed along the same axis and are electrically continuous with each other.
Abstract:
A printed wiring board includes three or more than three through holes. An inner wall of the through hole is covered by conductive coating. Same size leads of an electronic component are inserted into the through holes. The through holes are soldered by dip soldering the printed wiring board in melting solder. The through holes have two or more diameters. The diameter of the through hole having more adjacent through holes is not larger than the diameter of the through hole having less adjacent through holes.