Abstract:
A printed board includes a printed board body having a first side, a second side opposing the first side, and a through-hole; a printed conductor disposed on the first side of the printed board body; and a bus bar disposed on the second side of the printed board body, the bus bar including a terminal that extends through the through-hole. The terminal includes a plurality of branched terminal portions at a position corresponding to an interior of the through-hole, and at least one of the branched terminal portions is bent and attached to the printed conductor.
Abstract:
An energetic material initiation device having a receiver assembly and an initiator assembly that includes an electronic initiator and a pellet assembly with an energetic material. The receiver assembly is configured to be coupled to a firing circuit. When the firing circuit is to be armed, the initiator assembly can be pressed into a socket in the receiver assembly to electrically couple the receiver assembly and the initiator assembly. A method for mounting an energetic material initiation device to a firing circuit is also provided.
Abstract:
A printed circuit board includes a reference layer, at least one first hole defined in the reference layer and adjacent from a first pin in a first column of pins of an electronic component, and at least one second hole defined in the reference layer and adjacent from a second pin of the electronic component. The at least one second hole is defined in the reference layer and opposite to the at least one first hole. The second pin is in a neighboring second column of pins from the first column of pins. A diameter of the at least one first hole is greater than a diameter of the at least one second hole such that a difference in current flowing through the first pin and the second pin is reduced.
Abstract:
In accordance with a first embodiment, the present invention provides a circuit substrate comprising a first surface; a second surface; a first via having a first end near said first surface and a second end near said second surface; a second via having a first end near said first surface and a second end near said second surface; a first conductive element electrically coupling said first end of said first via and said first end of said second via; a second conductive element electrically coupling said second end of said first via and said second end of said second via; an input signal line coupled to said first via; and an output signal line coupled to said second via.
Abstract:
A package substrate 310 incorporating a substrate provided with a conductor layer 5, a conductive connecting pin 100 arranged to establish the electrical connection with a mother board and secured to the surface of the substrate, wherein a pad 16 for securing the conductive connecting pin is provided for the package substrate 310. The pad 16 is covered with an organic resin insulating layer 15 having an opening 18 through which the pad 16 is partially exposed to the outside. The conductive connecting pin 100 is secured to the pad exposed to the outside through the opening with a conductive adhesive agent 17 so that solution of the conductive connecting pin 100 from the substrate occurring, for example when mounting is performed is prevented.
Abstract:
A method and an electronic assembly for attaching a component to a substrate, or printed circuit board, is recited. The printed circuit board comprises a solder-nonwettable surface and a bond pad being formed of a solder-wettable surface. The printed circuit board defines a through hole extending through the printed circuit board and the bond pad. A plate lining a first portion of the through hole in the printed circuit board is formed of a solder-wettable material. Solder paste is applied to the bond pad and into the through hole. A component including a terminal overlies the bond pad in an arrangement. Reflowing the solder paste forms a solder fillet that bonds the terminal to the bond pad. The solder fillet extends within the through hole attaching the component to the printed circuit board.
Abstract:
A power distribution system is disclosed. The system includes a first power line and a second power line laid out on a substrate. The first power line is spaced apart from the second power line. The system also includes at least one conductive connecting line that electrically couples the first power line at one end and the second power line at another end. A power supply supplies power to the first power line and the second power line. A supply node on the conductive connecting line is then used to provide the supplied power.
Abstract:
A method for forming an electrical structure. The electrical structure comprises an interconnect structure and a substrate. The substrate comprises an electrically conductive pad and a plurality of wire traces electrically connected to the electrically conductive pad. The electrically conductive pad is electrically and mechanically connected to the interconnect structure. The plurality of wire traces comprises a first wire trace, a second wire trace, a third wire trace, and a fourth wire trace. The first wire trace and second wire trace are each electrically connected to a first side of the electrically conductive pad. The third wire trace is electrically connected to a second side of the electrically conductive pad. The fourth wire trace is electrically connected to a third side of said first electrically conductive pad. The plurality of wire traces are configured to distribute a current.
Abstract:
A printed wiring board having an insulating core; a plurality of vias having axes parallel to and at equal distance from a reference axis and passing through the core; a first conductive film formed on a front surface of the core from the reference axis to each of the individual vias; a first insulating film stacked on the front surface of the core and covering the first conductive film; a first connecting via having an axis identical to the reference axis and passing through the first stacked film; a second conductive film formed on a back surface of the core from the reference axis to each of the individual vias; a second insulating film stacked on the back surface of the core and covering the second conductive film; and a second connecting via having an axis identical to the reference axis and passing through the second stacked film.
Abstract:
Systems and methods for providing plated through-holes (PTH) in PCBs, which advantageously allow improved soldering capabilities, are described herein. Such systems and methods are achieved by reducing the heat sinking effects of PTHs by providing one or more vias surrounding the PTHs to provide an electrical connection between the PTH and the internal and bottom conductive layers of a PCB. In this regard, the PTHs are spaced apart from at least one of the internal conductive layers (e.g., ground or power layers), so the heat sinking effects are reduced. This feature enables molten solder to substantially fill the entire PTH before freezing, thereby improving the mechanical and electrical connection between an electrical component and the PCB.